Full CNF Encoding: The Counting Constraints Case

Olivier Bailleux!* and Yacine Boufkhad

1 LERSIA, Universié de Bourgogne
Avenue Alain Savary, BP 47870 21078 Dijon Cedex
olivier.bailleux@-bourgogne.fr
2 LIAFA, Université Paris 7
Case 7014 - 2, place Jussieu F-75251 Paris Cedex 05
Yaci ne. Bouf khad@i af a. j ussi eu. fr

Abstract. Many problems are naturally expressed using CNF clauses and bardedinality con-
straints. It is generally believed that solving such problems through @Nfe encoding is inefficient,
so many authors has proposed specialized algorithms : the pseuldashsolvers. In this paper we
show that an appropriate pure CNF encoding can be competitive with sipesélized methods. In
conjunction with our encoding, we propose a slight modification of the Didcedure that allows any
DLL-based SAT solver to solve boolean cardinality optimization problenes sthw experimentally
that our encoding allows zchaff to be competitive with pseudo-boolelaerscon some decision and
optimization problems.

1 Introduction

The increasing efficiency of SAT solvers and their highlyimized implementations make them good can-
didates for solving NP-complete problems using CNF repragion. The idea of encoding NP-Complete
problems in CNF follows directly from Cook’s theorem. Thigpaoach requires much less development
time than implementing a dedicated solver that reachesigtegerformances of modern SAT solvers. It
also benefits from future improvements of SAT solvers withadditional cost. Moreover, problems that
mix CNF clauses and other types of constraints, such asvattb constraints, can be expressed through
encoding to a full CNF representation allowing modern SAGhteques (like clause learning) to be fully
functional without need of adapting them within a mixed ad:-lsolver. However, the practical interest of
such an approach can be limited both by the size and the diffictithe resulting CNF formula.

The present study focuses on the problems that can be eggdreggpropositional clauses and/or counting
constraints, i.e., contraints that impose upper and lowents to the number of variables fixed to 1 in a
given set of Boolean variables.

Various methods can be used for solving these problems, asidtl integer linear programming and
pseudo-Boolean solvers using SAT solving techniques vathalausal representation of linear constraints
[2]. All theses methods solve problems that can be expraagbe form of linear inequalities of the type :
a1X1 + axX..... +anXn < b. In this paper we deal only with the restriction to the congitonstraint, namely
the case wherg; = 1.

A method for encoding in CNF linear integer inequalities w&&n by Warner in [7]. In [1], Warner's CNF
encoding of linear integer inequalities is compared withn BBS pseudo Boolean solver on global routing
problems. Despite the conciseness of the encoding and ehefuke state-of-the-art zchaff SAT solver,
PBS clearly outperforms the full CNF approach based on Wareacoding. Opposingly, [3] shows that
an appropriate CNF encoding of counting constraints thasgmves generalized arc consistency through
unit propagation, can be competitive with a commercial trans programming system, and even with a
dedicated solver, on discrete tomography problems. Thessdts show that it is somewhat hard to claim a
ground rule about the full CNF approach of solving countingstraints.

This paper brings two contributions.

First, we show that thanks to the efficient CNF encoding prieskin [3], using a full CNF approach can
be competitive with PBS on problems specified with proposél clauses and/or counting constraints and
solves instances that PBS can not solve. On some benclssntidding also clearly outperforms Warner’s
linear-space encoding, in spite of the greater size of themgeed formulae.

Second, we present a DLL based optimization procedure thatmizes the number of variables fixed
to 1 in a given subset of the variables belonging to a CNF féaymwhile satisfying the formula. This

264 Olivier Bailleux and Yacine Boufkhad

optimization procedure consists in a slight modificatiortte DLL procedure that works in conjunction
with the CNF encoding of counting constraints presente@jnThis transformation can be easily applied
to any DLL based SAT solver, including the ones that use eldearning. It allows problems like MAX-
ONEs or MAX-SAT, that were not previously included in the dieff SAT solver applications, to be handled
by slightly modified existing SAT solvers. Experimentaluks show that zchaffopt, the modified version
of zchaff can be competitive with the PBS optimizer and O-R Bolver OPBDP on the MAX-ONEs and
MAX-SAT problems.

These results attest that, using an efficient CNF encodlogialg unit propagation of DLL based solvers
to restore the generalized arc consistency, the full CNFagmh is a serious alternative to dedicated solvers
for handling counting constraints. They also suggest tiafull CNF approach could be successfully used
for many other problems based on global constraints, stitgj¢be design of optimized encoding schemes.

2 Encoding cardinality constraint

2.1 Warner’s encoding applied to counting constraints

In [7], a linear-time transformation of linear inequaldisto CNF is presented. The linear inequalities are
of this typeaixg + azxX2 + ... + amXm < b whereg; is an integer and; is a boolean variable. The counting
constraint is the particular case where every coeffiaeat1. The principle of this encoding can be defined
inductively byvi11 = vi + % andvp = 0. Every integer variable is represented by some boolean variables
as its binary representation. The relationg = v; + X; are then encoded in a standard manner into clauses
between boolean variables in the binary representatioss af. 1 andx;. The problem with this encoding

is that unit propagation does not maintain the generalized¢@nsistency in all cases. In the next subsec-
tion, we introduce a CNF encoding that maintains the geizexdhbrc consistency whatever is the order of
instantiation of variables.

2.2 The UT-MGAC encoding

For sake of readability, the CNF encoding of Boolean caltineonstraints introduced in [3] will be called
UT-MGAC (for Unit Totalizer Maintaining Generalized Arc @sistency). Let us recall that this encoding
uses a unary representation of integer intervals. Namebt, af Boolean variables, . . . ,Xmax Can represent
any intervalu..A in the range 0 max by setting, ..., X, to 1 andxy 1, ..., Xmax t0 0.

An adder based on this representation can deduce the ihtemeae an integec falls, given the intervals

of integersa andb such that = a+ b. The resulting CNF formula allows unit propagation to der@i the
consequences of every assignment with respect to geregtaliz consistency. The encoding of a cardinality
constraint then consists in a totalizer structured as anpigia adder network, extended by unary clauses
that restrict the possible output values.

The encoding clauses and additional encoding variablebeaenerated according to the figure 1, where
each adder with inpui, ..., am,, by,...,bm,, and outputy,...,rmis encoded as

/\ (C]_(G,B, 0) /\CZ(OU&U)) 1)

0<a<my
0<p<my
0<o<m
a+p=0

using the following notations:
a=bo=ro=1an+1=bmi1=rm1=0

Ci(a,B,0) = (aa Vbg Vrg), Co(01,B,0) = (8q+1V bg i1 VTor1)

In the unary representation of an integemwhen the bilay is equal to 1, the integex > a and conversely

if ax = 0 thena < a. Given this, the clauséy v bg V1), which will be called of typeC;, ensures that
the three following inequalities can not be false at the seme :a < a, b < 3, r > a + 3 and the clause
(@a+1V bgyq VTor1), which will be called of typeC,, ensures that at least one of the three following
inequalitiesistruea>a, b> B, r <a+p.

Now let n be the number of input and output variables of the totali@edQ be the cardinality constraint
p< N <A, whereN is the number of input variables of the totalizer that can kedfito one according to

Full CNF Encoding: The Counting Constraints Case 265

Q. Q will be achieved by additional unit clauses enforcing thgpativariables to match the interval A.
Namely,

A6 A &) 2

I<i<p A+1<j<n

As proved in [3], given any partial truth assignment of thpuhvariables, th&; andC; clauses allow
unit propagation to restore the generalized arc consigtef@. This encoding requireQ(n?) clauses and
Q(nlogn) additional variables. Without loss of the correctness dtetifig properties, its effective size can
be optimized by bounding tv+ 1 the number of output variables of any adder in the totalizer

totalizer n inputs

totalizer
Ln/2]inputs

input variables

totalizer
n-Ln/2] inputs

adder
comparator (unary clauses)

Fig. 1. UT-MGAG encoding scheme for Boolean cardinality constraints

2.3 Comparison of encodings

We compared the UT-MGAC encoding with warners [7] encoding aith PBS [1, 2], which includes
counting constraints without encoding them at all. We hawgetthis comparison on the tomography prob-
lems described in [3] which have many counting constraiftte.encoded problems have been solved using
zchaff. Table 1 lists the CPU times on a Pentium IV 1.3 GHz cat@pand shows clearly that this UT-
MGAC enconding outperforms warner’s and the PBS solver eridmography problems.

Name Zchaffi ZchaffiPBS
UT-MGAC|Warners

mouse2(0.21 74/0.07
mouse22 111 -
letterl8 227 70(8.12
letter20 220 - -
rand20-1 6 69 -—
rand20-2 6.3 0.21 -

Table 1.Comparison between UT-MGAC encoding, Warners encoding and RB&wography instances, 1000s is set
as time limit

266 Olivier Bailleux and Yacine Boufkhad

3 Optimization DLL

At this point, we present, a slight modification to the DLL pedure that allows it, in conjunction with
the encoding of cardinality constraint presented in sacfi®, to optimize the number of ones in some
objective set of variables. The recursive procedure isgotesl in Algorithm 1. It is applied to a set of
variables including the CNF encoding of the totalizer disat in section 2.2. It output is denoted by the
tuple (uz, Uy, ...,um). The goal is to find a solution such that the it maximizes theger having unary
representationiy, Uy, ..., Un.

Example : MAXONES problem

Given a CNF formula® built upon a set of variables V, find an assignment to the \wem of ® that
satisfies it and that have the maximum number of ones.

We use the encoding of the totalizer described in sectiai2tZot (V) be the CNF encoding of the totalizer
that have V as input. The output is the tupleg, u, ...,un). The final formula that is to be solved by the
subsequent algorithm is th&mA Tot (V). Note that any solution ¢b A Tot(V), restricted to the variables in
V, is a solution ofp and wu,...uy, is the unary representation of the sum of ones in that salutstricted

to the variables in V.

The procedure presented in Algorithm 1 is called with the tgmpt as an argumeritis a consistent set of
literals i.e. it does not contain a literal and its negatiorepresents the partial truth assignment obtained by
assigning true to every literal in i |, represents the formula obtained frénby applying the usual filtering
techniques (unit propagation and eventually other ruléisj assigning the value true to every literallin

In contrast with usual DLL procedur®LLopt does not stop when it finds a solution but continues the
search to find new solutions. The optimization is here peréat by simulating a branch and bound method
that consists in adding some unit clauses each time a newaols found. The variablenaxrecords the
maximum number of ones found so far plus one. It represeatgdhl required for the next solution.

Algorithm 1 A DLL that optimizes the number of 1's in some set of variab{ss the set of clauses the
tuple (ug, uy, ..., Uy) represents the output of the objective functioraxis initialized to 0 and = 0

1: DLLopt (l)
2: if F|, is a contradictiorthen
3. return;
4: else
5. if every variable of is assigned in (i.e.| is a solution}hen
6: for every literalu; € | such that > maxdo
7: F —FAu;
8: Incremenmax
9: end for
10: Incrementnax
11: F — F AUmax
12: return;
13: else
14: select a new variablesuch thav ¢ | andv ¢ |

15: DLLopt (1 U{v});
16: DLLopt (1 U{v});
17: endif

18: end if

3.1 Experimental results on optimization problems

In this section, we report the results on two sets of benckemdAX-ONES and MAX-SAT. The instances
are built from representative benchmarks from the SATLIBadase and from random instances. We have
modified zchaff [6] according to thBLLopt algorithm. Then we have compared the resulting program
zchaffopt against the pseudo-boolean solver PBS [2] andDthdLP solver OPBDP [5]. We used the

Full CNF Encoding: The Counting Constraints Case 267

default settings for these programs(-D 1 option for PBSk &kperiments were conducted on a Pentium
1.5GHz computer running under linux and with 1GByte RAM. Eashwas allowed a maximum of 5000s.

MAX-ONES : Table 2 lists the results of MAX-ONEs experiment. The sikz¢he formulas generated by
using the UT-MGAC encoding is reported for each instanceegoh group of benchmarks, only those that
at least one of the the programs solves are reported. Foe thas have a large number of instances like
graph coloring ones, only the first three instances are tepor he first remark is that zchaffopt solve many
instances that the one or both of the other solvers does tioiwvthe time limit. On the instances that are
easy for all the solvers, zchaffopt is slower because itséeHandle a large formula. The random instances
are generated at the hardest point of DISTANCE-SAT randatairce [4].

MAX-SAT : MAX-SAT is encoded by adding a negated new variable to edarse and by maximizing
the sum of the additional variables for zchaffopt and OPBEd?. PBS it is encoded as described in [1].
As in [1], a preprocessing is made using WalkSat to computaver bound on the number of satisfied
clauses. In the cases where only one clause is unsatisféeprdhlem amounts to prove that the instance is
unsatisfiable which is done very efficiently with zchaff. Weoose not to report the result in theses cases.
Conversely, the difficulty of the problem increases with tluenber of unsatisfied clauses. In all cases the
bound given by WalkSat is optimal and then the problem anstmprove the optimality of this bound.
Table 3 lists the results of MAX-SAT experiment.zchaffoptl@PBDP have almost the same performances
and both are faster than PBS on these instances.

4 Conclusion

We gave the experimental evidence that full CNF encodingdsrapetitive option for solving counting
constraints. We have shown that an appropriate encodingleyid modifications to DLL can make zchaff
to solve the problems usually reserved to pseudo-booldgersmr 0-1 ILP solvers.

Acknowledgments :We thank Fadi Aloul and Igor Markov for providing us with PB&de.

References

1. F. ALouL, A. RAMANI, |. MARKOV, , AND K. SAKALLAH , Generic ilp versus specialized 0-1 ilp: an update
International Conference on Computer Design (ICCD), 2002, pp-122.

2. F. ALouL, A. RAMANI, |. MARKOV, AND K. SAKALLAH , Pbs: A backtrack search pseudo-boolean sqlier
Symposium on the Theory and Applications of Satisfiability Testing (SAT pE®2, pp. 346—353.

3. O. BalLLEUX AND Y. BOUFKHAD, Efficient cnf encoding of boolean cardinality constrajritsProceedings of the
9th International Conference on Principles and Practice of Constraigtdmming, CP 2003, vol. 2833, LNCS.

4. O. BalLLEUX AND P. MARQuIs, DISTANCE-SAT: Complexity and algorithnis Proceedings of the Sixteenth
National Conference on Atrtificial Intelligence (AAAI'99), Orlando, Fida, 1999, pp. 642-647.

5. P. BARTH, A davis-putnam based enumeration algorithm for linear pseudo-boolptimiaation, technical report
mpi-i-95-2-003 tech. report, Max-Planck-Institut Fr Informatik, 1995.

6. M. Moskewicz, C. MADIGAN, Y. ZHAO, L. ZHANG, AND S. MALIK , Chaff: Engineering an efficient sat solyer
in 39th Design Automation Conference, June 2001.

7. J. P. WMRNERS A linear-time transformation of linear inequalities into conjunctive normal folnformation
Processing Letters, 68 (1998), pp. 63—69.

268 Olivier Bailleux and Yacine Boufkhad

Original formulg After encoding CPU time
Group Name #var #cla| #var #cla| zchaffopt| PBS OPBDP
ii8al 66 186 466 5276 0.03 0.04 0.01
Inductive |ii8a2 180 800 1544 35748 179 780 55
Inference |ii8a3 264 1552 2392 7524(Q 4413 — 2800
flat200-1 600 2237 6176 372784 510 — —
flat200-2 600 2237 6176 372784 39 — —
Graph flat150-1 450 1680 4438 211706 4 — 180
3-Coloring |flat150-2 450 1680 4438 211706 6 — —
flat75-1 225 840 1994 54778 0.2 2 0.23
flat75-2 225 840 1994 54778 0.2 612 6.2
sw1008.0_.1| 500 3100 4988 261576 9 — —
sw1008.0.2| 500 3100 4988 261576 10 — —
Graph sw1008 4.1 | 500 3100 4988 261576 1568 — —
5-Coloring |sw1008.4_2 | 500 3100 4988 261576 421 - —
100 vertices [sw1008.8.1 | 500 3100 4988 261576 2 4.2 —
sw1008.8.2 | 500 3100 4988 261576 25 0.19 —
gqg5-11 1331 64054152551862132 10 0.6 —
Quasigroupsqg6-09 729 21844 7724 566546 2 0.13 —
qg7-09 729 2206Q 7724 566762 15 0.1 -
3blocks 283 9690 2601 94132 1 0.6 483
Planning 4blocks 758 47820 8072 636254 2095 291 —
4blocksb 410 24758 3998 199624 1 0.8 4712
bw.a 459 4675 4537 223053 0.3 0.03 0.2
Bejing bw.b 1087 1377212083121624¢ 5 0.3 2.3
bw.c 3016 504571381289213921 112 4 -
Random mean 50 100 336 3122 0.01(100)| 0.04(100)* 0.01(100)*
instances |on 100 3CNF 75 150 547 6644 0.7(100)| 12(100)* 0.3(100)*
instances 100 200 772 1144410.3(100)| 62(18)* 3.5(100)*

*: Between () the number of solved instances. The mean CPU is compnkgdver solved instances
- : signifies not solved after 5000s or out of memory

Table 2. CPU time for MAX-ONEs on some benchmarks and randomly generastahioes

Original formulgAfter encoding CPU time
Name |#var #cla| #var #cla|zchaffopt| PBS OPBDP
jnh08 | 100 8507409 181514 032 4 0.74
jnh09 | 100 8507406 181516 043 44/ 049
jnh13 | 100 8507406 181516 057/ 8 062
jnh1l4 | 100 8507409 181514 0.35] 4 0.62
jnh15 | 100 8507406 181516 0.6/ 58 098
jnh19 | 100 8507406 181516 0.89/ 108 0.53
jnh211| 100 8006990 170268 0.28 3 0.34
jnh302| 100 9007806 192714 63 - 29
jnh303| 100 9007806 192714 56/3032 15
jnh304| 100 9007809 192716 75| 41 3.25
jnh305| 100 9007806 192714 14| 412 5.9
jnh307| 100 9007806 192714 41| 58 4.6
jnh308| 100 900780 192716 0.8 12 0.54
jnh309| 100 9007806 192714 04/ 4/ 017
jnh310| 100 900/7806 192714 10.1| 224 2.8

*: size of the formula using UT-MGAC for solving with zchaffopt

Table 3.CPU time on MAX-SAT for JNH unsatisfiable instances from the DIMACS basz.

