
Full CNF Encoding: The Counting Constraints Case

Olivier Bailleux1 and Yacine Boufkhad2

1 LERSIA, Universit́e de Bourgogne
Avenue Alain Savary, BP 47870 21078 Dijon Cedex

olivier.bailleux@u-bourgogne.fr
2 LIAFA, Université Paris 7

Case 7014 - 2, place Jussieu F-75251 Paris Cedex 05
Yacine.Boufkhad@liafa.jussieu.fr

Abstract. Many problems are naturally expressed using CNF clauses and booleancardinality con-
straints. It is generally believed that solving such problems through pureCNF encoding is inefficient,
so many authors has proposed specialized algorithms : the pseudo-boolean solvers. In this paper we
show that an appropriate pure CNF encoding can be competitive with thesespecialized methods. In
conjunction with our encoding, we propose a slight modification of the DLL procedure that allows any
DLL-based SAT solver to solve boolean cardinality optimization problems. We show experimentally
that our encoding allows zchaff to be competitive with pseudo-boolean solvers on some decision and
optimization problems.

1 Introduction

The increasing efficiency of SAT solvers and their highly optimized implementations make them good can-
didates for solving NP-complete problems using CNF representation. The idea of encoding NP-Complete
problems in CNF follows directly from Cook’s theorem. This approach requires much less development
time than implementing a dedicated solver that reaches the high performances of modern SAT solvers. It
also benefits from future improvements of SAT solvers with noadditional cost. Moreover, problems that
mix CNF clauses and other types of constraints, such as arithmetic constraints, can be expressed through
encoding to a full CNF representation allowing modern SAT techniques (like clause learning) to be fully
functional without need of adapting them within a mixed ad-hoc solver. However, the practical interest of
such an approach can be limited both by the size and the difficulty of the resulting CNF formula.
The present study focuses on the problems that can be expressed by propositional clauses and/or counting
constraints, i.e., contraints that impose upper and lower bounds to the number of variables fixed to 1 in a
given set of Boolean variables.
Various methods can be used for solving these problems, suchas 0-1 integer linear programming and
pseudo-Boolean solvers using SAT solving techniques with non clausal representation of linear constraints
[2]. All theses methods solve problems that can be expressedin the form of linear inequalities of the type :
a1x1+a2x2.....+anxn ≤ b. In this paper we deal only with the restriction to the counting constraint, namely
the case whereai = 1.
A method for encoding in CNF linear integer inequalities wasgiven by Warner in [7]. In [1], Warner’s CNF
encoding of linear integer inequalities is compared with the PBS pseudo Boolean solver on global routing
problems. Despite the conciseness of the encoding and the use of the state-of-the-art zchaff SAT solver,
PBS clearly outperforms the full CNF approach based on Warner’s encoding. Opposingly, [3] shows that
an appropriate CNF encoding of counting constraints that preserves generalized arc consistency through
unit propagation, can be competitive with a commercial constraint programming system, and even with a
dedicated solver, on discrete tomography problems. These results show that it is somewhat hard to claim a
ground rule about the full CNF approach of solving counting constraints.
This paper brings two contributions.
First, we show that thanks to the efficient CNF encoding presented in [3], using a full CNF approach can
be competitive with PBS on problems specified with propositional clauses and/or counting constraints and
solves instances that PBS can not solve. On some benches, this encoding also clearly outperforms Warner’s
linear-space encoding, in spite of the greater size of the generated formulae.
Second, we present a DLL based optimization procedure that maximizes the number of variables fixed
to 1 in a given subset of the variables belonging to a CNF formula, while satisfying the formula. This

264 Olivier Bailleux and Yacine Boufkhad

optimization procedure consists in a slight modification ofthe DLL procedure that works in conjunction
with the CNF encoding of counting constraints presented in [3]. This transformation can be easily applied
to any DLL based SAT solver, including the ones that use clause learning. It allows problems like MAX-
ONEs or MAX-SAT, that were not previously included in the field of SAT solver applications, to be handled
by slightly modified existing SAT solvers. Experimental results show that zchaffopt, the modified version
of zchaff can be competitive with the PBS optimizer and 0-1 ILP solver OPBDP on the MAX-ONEs and
MAX-SAT problems.
These results attest that, using an efficient CNF encoding allowing unit propagation of DLL based solvers
to restore the generalized arc consistency, the full CNF approach is a serious alternative to dedicated solvers
for handling counting constraints. They also suggest that the full CNF approach could be successfully used
for many other problems based on global constraints, subject to the design of optimized encoding schemes.

2 Encoding cardinality constraint

2.1 Warner’s encoding applied to counting constraints

In [7], a linear-time transformation of linear inequalities into CNF is presented. The linear inequalities are
of this typea1x1 + a2x2 + ...+ amxm < b whereai is an integer andxi is a boolean variable. The counting
constraint is the particular case where every coefficientai = 1. The principle of this encoding can be defined
inductively byvi+1 = vi +xi andv0 = 0. Every integer variablevi is represented by some boolean variables
as its binary representation. The relationsvi+1 = vi +xi are then encoded in a standard manner into clauses
between boolean variables in the binary representations ofvi , vi+1 andxi . The problem with this encoding
is that unit propagation does not maintain the generalized arc consistency in all cases. In the next subsec-
tion, we introduce a CNF encoding that maintains the generalized arc consistency whatever is the order of
instantiation of variables.

2.2 The UT-MGAC encoding

For sake of readability, the CNF encoding of Boolean cardinality constraints introduced in [3] will be called
UT-MGAC (for Unit Totalizer Maintaining Generalized Arc Consistency). Let us recall that this encoding
uses a unary representation of integer intervals. Namely, aset of Boolean variablesx0, . . . ,xmax can represent
any intervalµ..λ in the range 0..max by settingx0, . . . ,xµ to 1 andxλ+1, . . . ,xmax to 0.
An adder based on this representation can deduce the interval where an integerc falls, given the intervals
of integersa andb such thatc = a+b. The resulting CNF formula allows unit propagation to derive all the
consequences of every assignment with respect to generalized arc consistency. The encoding of a cardinality
constraint then consists in a totalizer structured as a pyramidal adder network, extended by unary clauses
that restrict the possible output values.
The encoding clauses and additional encoding variables canbe generated according to the figure 1, where
each adder with inputsa1, . . . ,am1, b1, . . . ,bm2, and outputr1, . . . , rm is encoded as

∧

0≤α≤m1
0≤β≤m2
0≤σ≤m
α+β=σ

(C1(α,β,σ)∧C2(α,β,σ)) (1)

using the following notations:

a0 = b0 = r0 = 1,am1+1 = bm2+1 = rm+1 = 0

C1(α,β,σ) = (aα ∨bβ ∨ rσ), C2(α,β,σ) = (aα+1∨bβ+1∨ rσ+1)

In the unary representation of an integera, when the bitaα is equal to 1, the integera≥ α and conversely
if aα = 0 thena < α. Given this, the clause(aα ∨bβ ∨ rσ), which will be called of typeC1, ensures that
the three following inequalities can not be false at the sametime : a < α, b < β, r ≥ α + β and the clause
(aα+1 ∨ bβ+1 ∨ rσ+1), which will be called of typeC2, ensures that at least one of the three following
inequalities is true :a > α, b > β, r ≤ α+β.
Now let n be the number of input and output variables of the totalizer,andQ be the cardinality constraint
µ≤ N ≤ λ, whereN is the number of input variables of the totalizer that can be fixed to one according to

Full CNF Encoding: The Counting Constraints Case 265

Q. Q will be achieved by additional unit clauses enforcing the output variables to match the intervalµ..λ.
Namely,

∧

1≤i≤µ

(si)
∧

λ+1≤ j≤n

(sj) (2)

As proved in [3], given any partial truth assignment of the input variables, theC1 andC2 clauses allow
unit propagation to restore the generalized arc consistency of Q. This encoding requiresΩ(n2) clauses and
Ω(nlogn) additional variables. Without loss of the correctness and filtering properties, its effective size can
be optimized by bounding toλ+1 the number of output variables of any adder in the totalizer.

Fig. 1.UT-MGAG encoding scheme for Boolean cardinality constraints

2.3 Comparison of encodings

We compared the UT-MGAC encoding with warners [7] encoding and with PBS [1, 2], which includes
counting constraints without encoding them at all. We have done this comparison on the tomography prob-
lems described in [3] which have many counting constraints.The encoded problems have been solved using
zchaff. Table 1 lists the CPU times on a Pentium IV 1.3 GHz computer and shows clearly that this UT-
MGAC enconding outperforms warner’s and the PBS solver on the tomography problems.

Name Zchaff Zchaff PBS
UT-MGAC Warners

mouse20 0.21 74 0.07
mouse22 111 − −
letter18 22.7 70 8.12
letter20 220 − −

rand20-1 6 69 −
rand20-2 6.3 0.21 −

Table 1.Comparison between UT-MGAC encoding, Warners encoding and PBS on tomography instances, 1000s is set
as time limit

266 Olivier Bailleux and Yacine Boufkhad

3 Optimization DLL

At this point, we present, a slight modification to the DLL procedure that allows it, in conjunction with
the encoding of cardinality constraint presented in section 2.2, to optimize the number of ones in some
objective set of variables. The recursive procedure is presented in Algorithm 1. It is applied to a set of
variables including the CNF encoding of the totalizer described in section 2.2. It output is denoted by the
tuple (u1,u2, ...,um). The goal is to find a solution such that the it maximizes the integer having unary
representationu1,u2, ...,un.
Example : MAXONES problem
Given a CNF formulaΦ built upon a set of variables V, find an assignment to the variables ofΦ that
satisfies it and that have the maximum number of ones.
We use the encoding of the totalizer described in section 2.2. LetTot(V) be the CNF encoding of the totalizer
that have V as input. The output is the tuple(u1,u2, ...,um). The final formula that is to be solved by the
subsequent algorithm is thenΦ∧Tot(V). Note that any solution ofΦ∧Tot(V), restricted to the variables in
V , is a solution ofΦ and u1u2...um is the unary representation of the sum of ones in that solution restricted
to the variables in V .
The procedure presented in Algorithm 1 is called with the empty set as an argument.I is a consistent set of
literals i.e. it does not contain a literal and its negation.I represents the partial truth assignment obtained by
assigning true to every literal in it.F |I represents the formula obtained fromF by applying the usual filtering
techniques (unit propagation and eventually other rules) after assigning the value true to every literal inI .
In contrast with usual DLL procedure,DLLopt does not stop when it finds a solution but continues the
search to find new solutions. The optimization is here performed by simulating a branch and bound method
that consists in adding some unit clauses each time a new solution is found. The variablemaxrecords the
maximum number of ones found so far plus one. It represents the goal required for the next solution.

Algorithm 1 A DLL that optimizes the number of 1’s in some set of variables. C is the set of clauses the
tuple(u1,u2, ...,un) represents the output of the objective function.maxis initialized to 0 andI = /0
1: DLLopt (I)
2: if F |I is a contradictionthen
3: return;
4: else
5: if every variable ofF is assigned inI (i.e. I is a solution)then
6: for every literalui ∈ I such thati > maxdo
7: F ← F ∧ui ;
8: Incrementmax;
9: end for

10: Incrementmax;
11: F ← F ∧umax;
12: return;
13: else
14: select a new variablev such thatv 6∈ I andv 6∈ I
15: DLLopt (I ∪{v});
16: DLLopt (I ∪{v});
17: end if
18: end if

3.1 Experimental results on optimization problems

In this section, we report the results on two sets of benchmarks MAX-ONES and MAX-SAT. The instances
are built from representative benchmarks from the SATLIB database and from random instances. We have
modified zchaff [6] according to theDLLopt algorithm. Then we have compared the resulting program
zchaffopt against the pseudo-boolean solver PBS [2] and the0-1 ILP solver OPBDP [5]. We used the

Full CNF Encoding: The Counting Constraints Case 267

default settings for these programs(-D 1 option for PBS). The experiments were conducted on a Pentium
1.5GHz computer running under linux and with 1GByte RAM. Each run was allowed a maximum of 5000s.

MAX-ONES : Table 2 lists the results of MAX-ONEs experiment. The size of the formulas generated by
using the UT-MGAC encoding is reported for each instance. For each group of benchmarks, only those that
at least one of the the programs solves are reported. For those that have a large number of instances like
graph coloring ones, only the first three instances are reported. The first remark is that zchaffopt solve many
instances that the one or both of the other solvers does not within the time limit. On the instances that are
easy for all the solvers, zchaffopt is slower because it needs to handle a large formula. The random instances
are generated at the hardest point of DISTANCE-SAT random instance [4].

MAX-SAT : MAX-SAT is encoded by adding a negated new variable to each clause and by maximizing
the sum of the additional variables for zchaffopt and OPBDP.For PBS it is encoded as described in [1].
As in [1], a preprocessing is made using WalkSat to compute a lower bound on the number of satisfied
clauses. In the cases where only one clause is unsatisfied, the problem amounts to prove that the instance is
unsatisfiable which is done very efficiently with zchaff. We choose not to report the result in theses cases.
Conversely, the difficulty of the problem increases with thenumber of unsatisfied clauses. In all cases the
bound given by WalkSat is optimal and then the problem amounts to prove the optimality of this bound.
Table 3 lists the results of MAX-SAT experiment.zchaffopt and OPBDP have almost the same performances
and both are faster than PBS on these instances.

4 Conclusion

We gave the experimental evidence that full CNF encoding is acompetitive option for solving counting
constraints. We have shown that an appropriate encoding andslight modifications to DLL can make zchaff
to solve the problems usually reserved to pseudo-boolean solvers or 0-1 ILP solvers.

Acknowledgments :We thank Fadi Aloul and Igor Markov for providing us with PBS code.

References

1. F. ALOUL , A. RAMANI , I. MARKOV, , AND K. SAKALLAH , Generic ilp versus specialized 0-1 ilp: an update, in
International Conference on Computer Design (ICCD), 2002, pp. 108–122.

2. F. ALOUL , A. RAMANI , I. MARKOV, AND K. SAKALLAH , Pbs: A backtrack search pseudo-boolean solver, in
Symposium on the Theory and Applications of Satisfiability Testing (SAT 2002), 2002, pp. 346–353.

3. O. BAILLEUX AND Y. BOUFKHAD, Efficient cnf encoding of boolean cardinality constraints, in Proceedings of the
9th International Conference on Principles and Practice of Constraint Programming, CP 2003, vol. 2833, LNCS.

4. O. BAILLEUX AND P. MARQUIS, DISTANCE-SAT: Complexity and algorithms, in Proceedings of the Sixteenth
National Conference on Artificial Intelligence (AAAI’99), Orlando, Florida, 1999, pp. 642–647.

5. P. BARTH, A davis-putnam based enumeration algorithm for linear pseudo-boolean optimization, technical report
mpi-i-95-2-003, tech. report, Max-Planck-Institut Fr Informatik, 1995.

6. M. MOSKEWICZ, C. MADIGAN , Y. ZHAO, L. ZHANG, AND S. MALIK , Chaff: Engineering an efficient sat solver,
in 39th Design Automation Conference, June 2001.

7. J. P. WARNERS, A linear-time transformation of linear inequalities into conjunctive normal form, Information
Processing Letters, 68 (1998), pp. 63–69.

268 Olivier Bailleux and Yacine Boufkhad

Original formula After encoding CPU time
Group Name #var #cla #var #cla zchaffopt PBS OPBDP

ii8a1 66 186 466 5276 0.03 0.04 0.01
Inductive ii8a2 180 800 1544 35748 179 780 55
Inference ii8a3 264 1552 2392 75240 4413 − 2800

flat200-1 600 2237 6176 372789 510 − −
flat200-2 600 2237 6176 372789 39 − −

Graph flat150-1 450 1680 4438 211706 4 − 180
3-Coloring flat150-2 450 1680 4438 211706 6 − −

flat75-1 225 840 1994 54778 0.2 2 0.23
flat75-2 225 840 1994 54778 0.2 612 6.2
sw1008 0 1 500 3100 4988 261576 9 − −
sw1008 0 2 500 3100 4988 261576 10 − −

Graph sw1008 4 1 500 3100 4988 261576 1568 − −
5-Coloring sw1008 4 2 500 3100 4988 261576 421 − −
100 vertices sw1008 8 1 500 3100 4988 261576 2 4.2 −

sw1008 8 2 500 3100 4988 261576 2.5 0.19 −

qg5-11 1331 64054152551862132 10 0.6 −
Quasigroupsqg6-09 729 21844 7724 566546 2 0.13 −

qg7-09 729 22060 7724 566762 1.5 0.1 −

3blocks 283 9690 2601 94132 1 0.6 483
Planning 4blocks 758 47820 8072 636254 2095 291 −

4blocksb 410 24758 3998 199624 1 0.8 4712
bw.a 459 4675 4537 223053 0.3 0.03 0.2

Bejing bw.b 1087 13772120831216246 5 0.3 2.3
bw.c 3016 50457381289213921 112 4 −

Random mean 50 100 336 3122 0.01(100) 0.04(100)∗ 0.01(100)∗

instances on 100 3CNF 75 150 547 6644 0.7(100) 12(100)∗ 0.3(100)∗

instances 100 200 772 11444 10.3(100) 62(18)∗ 3.5(100)∗

* : Between () the number of solved instances. The mean CPU is computedonly over solved instances
- : signifies not solved after 5000s or out of memory

Table 2.CPU time for MAX-ONEs on some benchmarks and randomly generated instances

Original formulaAfter encoding∗ CPU time
Name #var #cla #var #cla zchaffopt PBS OPBDP
jnh08 100 850 7406 181516 0.32 4 0.74
jnh09 100 850 7406 181516 0.43 4.4 0.49
jnh13 100 850 7406 181516 0.57 8 0.62
jnh14 100 850 7406 181516 0.35 4 0.62
jnh15 100 850 7406 181516 0.6 5.8 0.98
jnh19 100 850 7406 181516 0.89 10.8 0.53
jnh211 100 800 6990 170268 0.28 3 0.34
jnh302 100 900 7806 192716 63 − 29
jnh303 100 900 7806 192716 56 3032 15
jnh304 100 900 7806 192716 7.5 41 3.25
jnh305 100 900 7806 192716 14 412 5.9
jnh307 100 900 7806 192716 4.1 58 4.6
jnh308 100 900 7806 192716 0.8 12 0.54
jnh309 100 900 7806 192716 0.4 4 0.17
jnh310 100 900 7806 192716 10.1 224 2.8
*: size of the formula using UT-MGAC for solving with zchaffopt

Table 3.CPU time on MAX-SAT for JNH unsatisfiable instances from the DIMACS database.

