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Abstract. The variable branching heuristics used in the most recent and most effective SAT
solvers, including zChaff and BerkMin, can be viewed as consisting of a simple mechanism for
rewarding the variables participating in conflicts during the search process. In this paper we
propose to extend the simple rewarding mechanism used in zChaff and BerkMin, and develop
different rewarding mechanisms based on information provided by the search algorithm,
namely the size of learned clauses and the size of the backjumps in the search tree. The
results show that very significant gains can be obtained for real-world problem instances of
SAT.

1 Introduction

The architecture of a modern backtrack search SAT solver is composed of three main engines [7,
8]: the decision engine, the deduction engine and the diagnosis engine. The decision engine selects
the variables to branch on and the values to assign to those variables. The deduction engine
identifies necessary assignments, and most often corresponds to Boolean Constraint Propagation.
Finally, the diagnosis engine handles conflicts, and most often implements clause learning and non-
chronological backtracking. Besides the three main engines, a SAT solver usually utilizes efficient
data structures, for representing clauses. The overall search algorithm can also utilize a number of
additional techniques, including applying search restarts, and applying clause deletion policies [2,
1].

Over the last years, backtrack search SAT solvers have evolved significantly, either by improving
each of the basic engines, by developing new supporting data structures, and by integrating new
additional techniques.

In terms of the decision engine, different variable branching heuristics have been proposed.
These heuristics can be broadly categorized as static, dynamic or semi-dynamic. In static variable
branching heuristics the order in which variables are selected is established before the search
algorithm begins [3, 4]. This order of the variables is not affected by the subsequent search. Static
variable branching heuristics have the advantage of having negligible cost during the search, but
the key drawback of being ineffective for large practical problem instances. In dynamic variable
branching heuristics, the variable that is selected at each step is decided given the current status
of the search process. Dynamic variable branching heuristics range from simple literal counting
procedures, applied to each literal in the formula [6], to more elaborate approaches based on
probing assignments and evaluating the number of implied assignments [5]. Dynamic variable
branching heuristics have the advantage of yielding smaller search trees, but the key drawback of
requiring significant computational effort at each node in the search tree. In recent years, the most
effective backtrack search SAT solvers proposed the utilization of semi-dynamic variable branching
heuristics [8, 1]. In these heuristics, the information associated with variables is not static, but it
is also not updated at each node in the search tree. In general, semi-dynamic variable branching
heuristics update the heuristic information of a few variables after each conflict, and perform a
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global update after every N decisions, where N is a significantly large integer. There are a few
key advantages to semi-dynamic variable branching heuristics. First, these heuristics introduce
very little overhead. Second, the updates to the heuristic value of each variable are guided by
information provided by conflicts identified during the search process, and so the search process
effectively focuses on the variables that are relevant to the conflicts identified during the search
process.

For recent semi-dynamic branching heuristics, and each time a conflict is identified, the heuristic
value of each of a set of variables associated with the conflict is incremented by a fixed value, in
general 1 [8, 1]. This increment can be viewed as a (constant) reward, given to a set of variables
involved in conflicts.

In this paper we propose to extend this simple rewarding mechanism, independently of the
actual semi-dynamic variable branching heuristic being utilized. The objective of extending the
rewarding mechanism is to reward more the variables that yield significant savings in the search
space, by contributing to large backjumps, or that are involved in creating small learned clauses.
The results obtained on a representative class of real-world problem instances indicate that a more
generalized rewarding mechanism can be very effective in reducing the search space.

The remainder of the paper is organized as follows. In the next section we review two well-known
branching heuristics, VSIDS used in zChaff [8] and the heuristic used in BerkMin [1]. Afterwards,
in Section 3 we detail the rewarding mechanisms proposed in the paper. Results are presented and
analyzed in Section 4, and the paper concludes in Section 5.

2 Semi-Dynamic Variable Branching Heuristics

2.1 zChaff’s VSIDS Heuristic

The branching heuristic proposed in zChaff implements a semi-dynamic decision strategy called
Variable State Independent Decaying Sum (VSIDS). This heuristic has proved to be adequate for
real-world problem instances, being also characterized by having a small computational cost.

The VSIDS heuristic considers variables that participate in conflicts to be more relevant to the
search process than others. In the implementation of the VSIDS heuristic, all variables that are
included in each learned clause are declared to be involved in the conflict. Besides this dynamic
component, VSIDS also includes a static component that counts the number of occurrences of each
literal in the initial formula. This value corresponds to the initial score of each literal when the
search begins. Then the score is updated dynamically in the following way:

– Each time a conflict clause is created the score of each literal that participates in the clause is
incremented by one.

– After every N conflicts the score of each literal is aged, by dividing it by a small constant. In
this way the literals that do not participate in conflicts for a long time are penalized.

2.2 Berkmin’s Heuristic

Given the promising results of the VSIDS heuristic, the authors of BerkMin [1] further extended
this heuristic in two major ways:

– First, all clauses that participate in the implication sequence resulting in a conflict are declared
to be involved in the conflict, and so their score is also incremented. This modification can be
viewed as a way of rewarding all variables that are effectively involved in contributing to each
conflict.

– Second, the heuristic of BerkMin gives preference to variables that occur in recently recorded
clauses.

3 Rewarding Mechanisms

The main motivation of rewarding mechanisms is to extend one of the key aspects of zChaff’s
VSIDS heuristic, namely the reward of variables involved in conflicts, which become more likely
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Reference 1 ≤ #lits ≤ 50 #lits > 50

RC 4 1

Table 1. Rewards based on clause size

Reference bjmp = 1 2 ≤ bjmp ≤ 20 bjmp > 20

RJ 1 2 4

Table 2. Rewards based on backjump size

to be used by the variable branching heuristic. Whereas in zChaff and Berkmin the reward is
uniform for every conflict, in this paper we propose to reward variables differently, depending on
the potential impact of the conflict for the subsequent search. Existing data indicates that two
measures of success of a SAT solver are the size of learned clauses, the smaller the better, and the
size of backjumps, the larger the better [7]. As a result, we propose to reward variables accordingly.
Variables involved in a conflict from which a small clause is learned or from which a large backjump
is obtained are rewarded more than variables involved in a conflict from which a large clause is
learned and the resulting obtained backjump is small. The rewards that are used in the proposed
variable branching heuristic are shown in Tables 1 and 2. The numbers shown in the tables are
intended to be indicative. We have used these rewards for the experiments shown in the paper, but
other values could have been considered, allowing more aggressive rewards of large backjumps and
very small clauses.

Given the proposed rewarding scheme, we can consider the sole application of rewards based
on learned clauses, which we refer to as RC. We can consider the sole application of rewards based
on backjump size, which we refer to as RJ. Finally, we can consider the integrated application of
rewards based both on learned clauses and backjump size, which we refer to as RCJ.

Initially, variables occurring in smaller clauses are rewarded more than variables occurring in
larger clauses. Whenever a clause is learned, if its size is small enough, then the variables associated
with the learned clause are more rewarded. Finally, if the backjump that results from analyzing a
conflict and learning a clause is large enough, then the variables associated with the learned clause
are more rewarded.

4 Results

The rewarding mechanisms were integrated in the zChaff code [8]. In order to evaluate the effective-
ness of utilizing rewarding mechanisms, a large set of real-world problem instances was considered.
These instances represent practical formal verification examples. The classes of instances consid-
ered are shown in Table 3. For our evaluation we just considered classes of instances where the
current version of zChaff can solve the majority of the existing problem instances. The evaluation
of rewarding mechanisms is restricted to the VSIDS heuristic 3.

The results of applying the different rewarding mechanisms are shown in Table 3. In this table,
column TO means Time Out and represents the number of instances that exceeded the allowed
running time (1800 seconds). All the results were obtained in a P IV @ 1.7GHz machine with
1GByte of RAM.

As can be concluded, the utilization of rewards is clearly useful, allowing significant gains, both
in terms of the total CPU time and in terms of the number of aborted instances. For the branching
heuristic using both clause and backjump rewards, the run times decrease by more than a third
with respect to the plain VSIDS heuristic. The number of aborted instances decreases by two thirds
with respect to the plain VSIDS heuristic.

Table 4 shows, for each class of instances, the number of instances for which the results are
better, worse or equal when comparing the plain VSIDS heuristic with the VSIDS heuristic which

3 Since the BerkMin code is not publicly available, it is not possible to modify its heuristic to also include
rewarding mechanisms. An alternative implementation of the BerkMin’s heuristic is not guaranteed to
allow reproducing the same results.
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Class VSIDS TO RC TO RJ TO RCJ TO

IBM 01 rule 7000 2 11204 2 5966 1 8318 1

IBM 02 1 rule 1 11213 3 8992 1 9446 2 7038 0

IBM 02 1 rule 2 11548 3 10214 2 10289 2 8776 1

IBM 02 1 rule 3 2021 0 1614 0 1464 0 1178 0

IBM 02 1 rule 4 1873 0 1347 0 1246 0 1098 0

IBM 02 1 rule 5 2404 0 2144 0 1761 0 1104 0

IBM 02 2 rule 4509 0 3750 0 3775 0 2848 0

IBM 02 3 rule 1 7216 1 6034 0 1838 0 4090 0

IBM 02 3 rule 2 14910 4 6100 0 7375 1 5441 1

IBM 02 3 rule 3 6520 1 7422 0 3361 0 3726 0

IBM 02 3 rule 4 11558 4 5887 0 11516 1 4390 0

IBM 02 3 rule 5 8491 2 5656 0 5931 1 4085 0

IBM 02 3 rule 6 14174 5 6799 0 8012 1 3744 0

IBM 03 rule 9713 4 9124 3 8620 2 8712 1

IBM 04 rule 10695 3 14381 6 13101 6 10560 4

IBM 05 rule 1308 0 1075 0 966 1 1239 0

IBM 06 rule 9879 1 8915 3 9238 2 6825 1

IBM 07 rule 363 0 249 0 278 0 231 0

IBM 09 rule 96 0 71 0 18 0 46 0

IBM 14 1 rule 3285 0 1292 0 1086 0 989 0

IBM 19 rule 1717 0 2723 0 2987 0 2019 0

IBM 21 rule 1035 0 912 0 763 0 1339 0

IBM 26 rule 481 0 787 0 697 0 1201 0

IBM 27 rule 1522 0 1892 0 1787 0 1749 0

IBM 28 rule 8988 1 7479 1 6263 1 7434 1

TOTAL 152519 34 126063 18 117784 21 98180 10

Table 3. Execution times for the different rewarding mechanisms, RC, RJ and RCJ

uses rewards on clauses and on backjumps. As can be observed, the number of instances for which
the results are better with rewards is significantly larger than the number of instances for which
the results are worse when rewards are used.

Finally, Figure 1 shows the percent variation in run times between the plain VSIDS heuristic and
the utilization of rewarding mechanisms, both for clauses and for backjumps. As can be concluded,
for the vast majority of problem instances, rewards introduce significant gains. Moreover, the
number of classes for which reward mechanisms result in worse run times is small and negligible,
with one exception.

5 Conclusions

This paper proposes the utilization of rewarding mechanisms as an effective improvement to existing
variable branching heuristics. The experimental results indicate that the utilization of rewarding
mechanisms can be extremely effective for specific classes of problem instances, namely instances
associated with the formal verification of processors.

A few lines of additional research can be outlined. First, the utilization of more aggressive
rewards, that reward more larger backjumps or very small learned clauses. Second, the utilization
of more rewarding mechanisms, e.g. the number of implied assignments and the depth at which
each conflict occurs. Finally, the utilization of rewarding mechanisms with other variable branching
heuristics and with other representative classes of instances may provide further insights into the
practical usefulness of this technique.
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