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Abstract. We propose a method for testing satisfiability based on Boolean rings. It makes
heavy use of simplification, but avoids the potential size increase associated with application
of the distributive law by employing a combined linear and binomial representation. Several
complexity results suggest why the method may be relatively effective in many cases. The
framework is also amenable to learning from intersections, as in St̊almarck’s method. Some
experiments have been undertaken.

1 Introduction

Simplification has been used successfully in recent years in the context of theorem proving. This
process is based on a well-founded notion of “simplicity”, under which one can delete intermediate
results that follow from known (or yet to be derived) simpler facts. Simplifying as much as pos-
sible at each stage can greatly reduce storage requirements. Simplification-based theorem-proving
strategies, as in the popular term-rewriting approach, have been used to solve some difficult prob-
lems in mathematics, including the long-open Robbins Algebra Conjecture [12]. For term rewriting
in automated deduction, see [6].

A natural way of incorporating simplification in propositional reasoning is to use the Boolean-
ring (BR) formalism. Boolean rings obey the following identities:

xx = x x0 = 0 x1 = x
x+x = 0 x+0 = x −x = x

xy = yx (xy)z = x(yz)
x + y = y + x (x + y) + z = x + (y + z) x(y+z ) = xy+xz

where (nilpotent) + is exclusive-or and (idempotent) juxtaposition is logical-and, ∧. (The additive
inverse −x is useless.) It is straightforward to express inclusive-or and negation: x∨ y is xy +x+ y
and x̄ is x + 1.

The Boolean-ring formalism differs from Boolean algebra in that it defines a unique normal form
(up to associativity and commutativity of the two operators) for every Boolean formula, called a
Boolean polynomial (also known as a Zhegalkin polynomial or Reed-Muller normal form). Using
Boolean rings, however, is not without drawbacks: Applying the distributive law (the bottom-right
equation) can cause the length of a Boolean polynomial to grow exponentially in the worst case.

This paper focuses on satisfiability testing using Boolean rings (which is NP-hard [2]). Sev-
eral possibilities are outlined in the next two sections. Section 4 proposes a Davis-Putnam-like
method for satisfiability. We use a novel representation, separating the set of formulæ into two
parts (linear, binomial), each of which, on its own, can be dealt with efficiently. This is followed
(in Section 5) by some suggestions for practical improvements. Section 6 provides several new rel-
evant complexity results. We have NP-completeness, which immediately implies completeness of
the proposed method. We also give polynomial-time results for restricted classes of Boolean-ring
formulæ corresponding to the two parts mentioned above. These results provide justification as
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to why the proposed method may be efficient. Then (in Section 7) we apply the Boolean-ring
representation in a framework—akin to St̊almarck’s method [14] and recursive learning [11]—that
includes computing the intersection of sets of formulæ. Preliminary experimental results may be
found in Section 8. This is followed by some brief comments.

2 Satisfiability

There are three basic approaches to deciding satisfiability:

Normalize. To decide satisfiability, one can transform a formula into a normal form that clearly
distinguishes between satisfiable and unsatisfiable cases. Such canonical representations include
disjunctive normal form (DNF) and conditional normal form (as in OBDDs). The Boolean-ring
normal form (BNF), described above, can be obtained directly by applying the emboldened ring
axioms from left to right to any formula [7]. Tautologies reduce to 1; contradictions, to 0; contingent
formulæ, to neither. But any normal form can of necessity be exponentially larger than the original.
For example, the BNF of (p+p′)(q+q′)(r+r′) is pqr+pqr′+pq′r+pq′r′+p′qr+p′qr′+p′q′r+p′q′r′.
In the process of normalization, terms that appear twice in a sum cancel each other out (since
x + x = 0), but this method is still, in general, impractical.

An alternative [4, 8] is to construct a Gröbner basis (confluent and terminating rewrite system)
from the initial set of equations, plus idempotence (xx = x) for each propositional variable (x). To
begin with, rather than present the whole given formula as one big equation, conjunctions AB = 1
are divided into two, A = 1 and B = 1, and inclusive disjunctions A ∨ B = 0 into A = 0, B = 0.
The BR axioms are applied at each step, and equations are “inter-reduced” by using each as a
simplifier of others. The resultant reduced set of Boolean polynomials is unique up to associativity
and commutativity of sums and products. By imposing an ordering on (variables and extending
it to) monomials, a unique normal form for Boolean functions is obtained. Efficient techniques
(congruence closure, Gröbner bases) can be applied to the generation task. A structure-sharing
(“decision diagram”) exclusive-or normal from is presented in [9].

Search. The Davis-Putnam-Logemann-Loveland (DPL) procedure [5] was the first attempt to solve
the satisfiability problem efficiently, by employing a backtracking search strategy, plus heuristics
to minimize formulæ. A truth value is assigned to a variable and the formula is recursively solved,
trying another value when no solution is found. There are many fast implementations today based
on this old procedure.

In the same vein, one can easily represent formulæ as sets of Boolean polynomials (without any
exponential blowup in size), and use a similar backtracking method. See [8]. Splitting is done on
variables, as usual, but formulæ are kept as simplified BR equations. Section 4 below improves on
this by employing a new BR representation.

Saturate. The traditional mechanical approach to satisfiability of a propositional formula is to
refute its negation and try to infer a contradiction. The total number of consequences one needs
to derive is, of course, in general, exponential. Most nontrivial proofs require some form of case
splitting. In Section 7, we combine limited saturation with search, within a BR framework.

3 Simplification

To counter the certain exponential cost of näıve realizations of satisfiability methods, simplification
at intermediate stages is of paramount importance. Database entries are replaced with simpler ones
(in some well-founded sense) by making polynomial-time inferences and deleting now-redundant
formulæ. Such steps reduce the likelihood of suffering from the potentially exponential aspect of
the approach (be it case analysis, splitting, merging, or distribution).

Regardless of the method, it is helpful to make cheap and valuable deductions—which may
enable additional simplifications—as early as possible. In particular, virtually all approaches employ
some mechanism for detecting “necessary” assignments. Simplification rules used in DPL and
OBDD provers [3] include tautology, unit (BCP), pure literal, subsumption, and failed literal. (In
practice, tautology and pure-literal are often omitted.) In the search approach, after assigning 0
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or 1 to a variable, simplifiers like x0 = 0, x1 = x, x ∨ 0 = x, and x ∨ 1 = 1 should be applied,
regardless of the specific manner in which formulæ are represented, since these rules may result in
the deletion of all occurrences of some other variables. Simplification was used in [13] to preprocess
CNF formulæ coming from circuit testing, and other sources, and found to reduce the number of
variables to 1/3 in many cases. In a normalization approach, the same simplifiers can dramatically
reduce the size of formulæ. The first five Boolean-ring axioms are simplifiers. They can be easily
implemented by keeping terms sorted.

4 Representation

We argue that Boolean rings are an especially convenient framework for simplification. As men-
tioned already, distributivity is the potentially expensive step (even when directed acyclic graphs
are used for shared subterms). We propose a new representation that circumvents this problem.

A linear equation (over Z2) is a Boolean equation in which each monomial is either a single
variable or a constant; it takes the form x1 + · · · + xn = 1 or x1 + · · · + xn = 0, where the xi

are distinct propositional variables. A binomial equation is a Boolean equation with at most two
monomials, that is, an equation of one of the three forms: P = Q, P = 0, or Q = 1, where P and
Q are products of distinct propositional variables (distinct on account of idempotence). Simple
equations, x = 0, y = 1, or x = y, for propositional variables x, y, as well as degenerate equations,
0 = 0, 1 = 1, or 1 = 0, will be considered both linear and binomial.

Let B be a set of binomial equations and L be a set of linear equations over the propositional
variables. Instead of solving a general set of Boolean-ring equations (e.g. xy + x + y = 0 implies
x = 0 and y = 0), we will decide the satisfiability of B∪L. Simplification by B of L, and vice-versa,
will be severely limited.

Given a system R = B ∪ L and an ordering > on monomials, inference proceeds as follows:

1. Termination Test. If 1 = 0 has been inferred, the system is unsatisfiable.
2. Tautology Deletion. Remove all trivial equations A = A.
3. Decomposition. Decompose any equation x1x2 · · ·xk = 1 in B into x1 = 1,. . . , xk = 1.
4. Unit Rule. Use all unit equations of the form x = 0 or x = 1 in R to simplify equations in R.
5. Equivalence Rule. If two variables are equated, x = y, replace one by the other throughout R.
6. Simplification. Inter-reduce one equation by another within B and within L.
7. Splitting. Split the system of equations by considering, R∪{x = 1} and R∪{x = 0}, individ-

ually and recursively, for some propositional variable x appearing in R.

Equations in B and L are processed independently, except for the Unit Rule and Equivalence
Rule. Splitting on x and applying the unit rule eliminates x from both B ∪ {x = 1} ∪ L and
B ∪ {x = 0} ∪ L. One advantage of this mixed representation is that relatively fast methods exist
for processing each of the two components (see Section 6). The Simplification step is not needed
for completeness, but rather to improve search efficiency. The choice of ordering > is flexible: It
may prefer short monomials, to keep equations short, or long ones, to maximize the likelihood of
a simplifier applying.

The method presented above is complete for propositional reasoning (Theorem 3 below). Soft-
ware is available to handle the computations within each of the two sets, B and L. Distributivity
is not needed when simplifying Boolean terms, because equations in L are not used to simplify B,
so formulæ do not grow very large, as in more conventional Boolean-ring based methods.

Example 1. Suppose we want to prove the validity of the formula

(p ∨ q) ∧ (q̄ ∨ s) ∧ (s̄ ∨ p) ∧ (p̄ ∨ r) ∧ (r̄ ∨ p̄ ∨ t) ⇒ (t ∧ r).

In order to represent the clause p ∨ q, a new variable u for p̄ is required. The clausal form of its
negation, written as Boolean equations, is as follows:

(1) qs = q (2) sp = s (3) prt = pr (4) rt = 0 (5) p + u = 1 (6) qu = u (7) pr = p

Eq. (4) simplifies (3) to pr = 0, which, in turn, simplifies (7) to p = 0. This invokes the Unit
Rule, and (2,5) become s = 0 and u = 1, which simplify (1) to q = 0. Finally, u = 1 and q = 0
simplify (6) into the contradiction 1 = 0, concluding the proof (sans splits). ut
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5 Cross Fertilization

It is advantageous to allow some “cross fertilization” between B and L, so that useful equations
can migrate from one set to the other. Consider a linear equation x + y + z = 1. By assigning 1
to variables x and y, the equation reduces to z = 1, since the even number of 1’s cancelled each
other. Thus, we may conclude that the binomial equation xyz = xy is a logical consequence. In
general, a linear equation y1 + y2 + · · · + yk = c, implies the binomial y1y2 · · · yk = 0, if either
k is even and c = 1, or k odd and c = 0. In the remaining two cases, it implies k binomials
y1y2 · · · yk = y1y2 · · · yk−1. We emphasize that every linear equation can breed some binomial
equation(s). If we have w + x + y = 0 and x + y + z = 1 in L, we can add wxy = 0, xyz = xy,
xyz = xz, and xyz = yz to B. More interestingly, the sum of the two linear equations is w + z = 1,
which implies wz = 0.

Additional simplifications within B are also possible. Suppose we have MP = QR and MQ = 0,
where M,P,Q,R are monomials. Since either M or Q equals 0, it is evident that either MP or
QR equals 0. However, MP = QR; hence both must be 0. Therefore, we can use MQ = 0 to
reduce MP = QR to two equations, MP = 0 and QR = 0. This is an example of a critical pair
computation [6], which results—after simplification—in smaller equations. In general, entailment
of equations in either B or L alone is cheap (cf. Theorems 1, 2 below).

In practice, it is better when short equations are derived. A shorter equation has more chance
to simplify others, and after performing simplification, the shorter equations may be retained more
economically.

6 Completeness and Complexity

In this section we present several complexity results, including a reduction from SAT to the corre-
sponding problem in Boolean rings (BRSAT), and two polynomial-time subclasses (for B and L).
Completeness of the whole method follows as a direct consequence of NP-completeness. The other
results give some evidence as to why our method may be relatively effective.

Let Linear-BRSAT be the problem of solving a system of linear equations over the Boolean ring.
Gaussian elimination can solve Linear-BRSAT in O(n2.376) time:

Theorem 1. Linear-BRSAT is solvable in cubic time.

Note that, although Tseitin formulæ have an exponential lower bound for resolution [15, 1],
they can be solved easily within L alone.

Let Binomial-BRSAT be the problem of solving a system of binomial equations. The well-known
Horn-SAT case falls within this class, since any Horn clause x1 ∧ · · · ∧ xm → y is equivalent to
x1 · · ·xmy = x1 · · ·xm in the Boolean ring. In fact, Binomial-BRSAT defines the same Boolean
functions as does Horn-SAT. Thus:

Theorem 2. Binomial-BRSAT is linear-time solvable.

Full computation of the Gröbner basis of B is not feasible, since its size can be exponential in
the number of variables (though we have not determined the precise complexity of computing an
efficient representation of the basis).

Despite the fact that Linear-BRSAT and Binomial-BRSAT are easy, their combination, BRSAT
(satisfiability over B∪L) is NP-complete, as one would expect. Recall that a clause l1∨ l2∨· · ·∨ lm
can be easily converted into an equation by expanding (l1 + 1)(l2 + 1) · · · (lm + 1) = 0. If there
are more than two positive literals amongst the l’s, the final equation will contain at least four
monomials. To avoid this, we introduce new Boolean variables that serve as the complement of the
positive literals. Suppose li is a positive literal, a new variable l̄i and new equation l1 + l̄i = 1 are
introduced, and li +1 is replaced by l̄i. Finally, several linear equations and one binomial equation
represent the clause.

Theorem 3. BRSAT is NP-complete.

This theorem directly implies the completeness of the method. This is because splitting alone
is complete for propositional calculus, and the reduction from SAT (in the proof of this theorem)
implies that every Boolean formula can be converted into Bin-Lin form.
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7 Intersection Method

The innovative approach of St̊almarck’s Prover [14] has been used successfully for testing satisfia-
bility of several large-scale industrial problems. The core idea is to learn as much as possible from
case splits. Such saturate-by-intersection methods (also [11]) proceed via iterative deepening:

1. Perform cheap (i.e. polynomial) inferences. Check if done.
2. Choose a variable to split on; recur on each case.
3. If either case succeeds, then done; otherwise, merge results.
4. If something learned, add it to formulæ and reset the list of variables.
5. If no unsplit variables remain, increase depth up to current bound;

otherwise, continue at same depth.
6. Repeat with incremented bound on maximum depth.

By “merging”, we mean looking for consequences that hold in both cases. Since the process is
repeated whenever new formulæ are learned, the search can involve a much larger than necessary
total number of splits.

Formulæ in [14] are represented as “triplets”, of the form x ⇔ y ∧ z, where x, y, z are proposi-
tional variables, which is just the binomial x = yz in BR. We have implemented such a scheme for
the full Bin-Lin representation (see the next section). The low complexity of inference for either
binomials or linear equations means that one can tractably test for small shared simplifiers, even
if they do not appear explicitly in B or L.

8 Results

The degree to which simplification and learning can sometimes reduce the number of splits needed in
a backtrack search is the main practical question. In our initial experiments with an implementation
of a näıve Boolean-ring-based search method (of Section 2), the number of splits was reduced
by 30% [10]. This saving, however, came at the price of time-consuming simplification, mainly
because—in that implementation—distributivity was needed, which is not the case with the method
proposed here.

We implemented the intersection method of the previous section (in about 5K lines of C++),
using the Bin-Lin representation of Section 4, and incorporating conflict learning (but no other
DPL improvements). We ran the program on 700 real-life hardware verification examples and
observed a reduction of about 30% in the number of the splits when intersections were computed.
Table 1 displays some representative results. Despite the heavy cost of merging, there was an
overall average reduction of 3% in run time, since merging often produces simplifiers that greatly
reduce the need for splitting. Although our experiments to date included only 5–10 input variables,
the number of intermediates sometimes exceeded 100, due to the need for temporary variables to
convert to the Bin-Lin representation. The code wasn’t designed to be competitive in terms of
performance; thus constant propagation over the Bin-Lin system was noticeably time consuming.
(For this reason, we could not perform larger tests within the allotted 5-minute timeout.)

Table 1. Representative runs with and without merging

Variables Splits Reduc-
Input Temp. Plain Merge tion

10 103 3524 1780 49.4%
10 60 4894 2820 42.4%
9 60 3258 2951 9.4%
9 60 3564 2196 38.4%
8 36 2050 547 73.3%
8 77 332 332 0.0%
7 80 486 349 28.2%

Variables Splits Reduc-
Input Temp. Plain Merge tion

7 64 243 210 13.6%
7 58 163 197 -20.9%
6 32 121 132 -9.1%
6 36 108 66 38.4%
6 31 127 154 -21.3%
5 24 41 35 13.6%
5 27 62 38 38.7%

In these tests, as the complexity of the problem increased, the reduction in splits improved.
This trend can be seen in the above table, and may be explained by the higher probability of
obtaining new facts in the intersection.
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9 Discussion

Simplification is more time-consuming than splitting on a variable or evaluating a truth-assignment.
Splitting a variable can usually be carried out in linear time, but we know of no linear-time algo-
rithm for checking or performing simplification. (A polynomial simplification algorithm is straight-
forward, simply trying all possible pairs of input equations.)

Besides the ease of incorporating simplification, Boolean rings are a suitable representation for
preprocessing for the following reason: Let C be the set of Boolean formulæ over all binary and
unary operations, D be over {∨,∧, ¯}, and G over {1,+,∧}. As shown in [9], any formula in C
is linearly reducible to one in G, but may not be linearly reducible to one in D. Hence, Boolean-
ring formulæ can preserve the structure of any Boolean formulæ, while Boolean algebra requires
additional variables. This ability to preserve structure is also important for St̊almarck’s method
(cf. Section 7), which is sensitive to the structure of the input formula.

Nilpotence of + makes it possible to express parity succinctly as a linear equation in the
Boolean ring. This feature allows for very simple BR proofs of the pigeon-hole principle and the
mutilated checkerboard. In contrast, in Boolean algebra, the shortest corresponding formula is of
quadratic length, if no new variables are introduced. Introducing new variables normally increases
computational effort.

It should also be interesting to identify additional subclasses of Boolean rings (like Binomial-
BRSAT) for which satisfiability testing can be accomplished by simplification alone, without split-
ting.
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