Local Search with Bootstrapping

Lengning Liu and Mirostaw Truszcigki

Department of Computer Science, University of Kentucky,
Lexington, KY 40506-0046, USA

Abstract. We propose and study a technique to improve the performance of those local-search SAT
solvers that proceed by executing a prespecified number of tries, each starting with an element of the
space of all truth assignments and performing a prespecified number of local-search steps (flips). Based
on the input theory T, our method first constructs a collection of its relaxations, that is, theories whose
models are easy to compute and “almost” satisfy T. It then uses a local-search algorithm to compute
models of the relaxed theories and, finally, uses these models as starting points for tries when execut-
ing the local search algorithm on T. To construct relaxations our method takes advantage of high-level
representation of search problems, which separate the specification of a search problem from the de-
scription of its particular instances. The method is general. We applied it to WSAT, a local-search SAT
solver for CNF theories, and to WSAT(cc), a local-search SAT algorithm for theories in the language of
propositional logic with cardinality constraints. Experimental results demonstrate its effectiveness for
both local-search algorithms we studied.

1 Introduction

We propose and study a general technique to improve the performance of certain classes of local-search
SAT solvers in computing solutions to instances of search problems. Our method takes advantage of high-
level representations of search problems, which separate the specification of a search problem from the
description of its particular instances.

Typically, in order to solve a search probldinfor an instancd, we construct a propositional thedfy
so that models of" determine solutions. We then use a SAT solver to compute mod&lsntl reconstruct
from them the corresponding solutions. However, once a propositional theory representing a search problem
and its instance is formed, the connection to the search problem and the structure of its instances is no
longer clear. Consequently, SAT solvers view these theories as if they were arbitrary propositional theories.
They do not take advantage of the specification of the search problem and properties of the structure of its
instances to fine-tune the way they compute models.

Recently, researchers recognized that and proposed formalisms for representing search problems and
their instances based on predicate logic [5,6] and the existential fragment of second-order logic [2]. A
search problenii/ (more precisely, a set of constraints specifying it) is represented by a collection of clauses
(program) in the logic Pr7, and an instancé (input datato the problemiT) is given as a collectioD;
of ground atoms, that is, an instance of some prespecified relational schema. To obtain a propositional
representation of the search probldimand its instancd, we groundthe programpP;; with respect to
constants specified in the data &&t.

This approach to building propositional representations of instances of search problems makes explicit
the constraints of a search problem and the data instance schema. Consequently, it opens a possibility to
design SAT solvers that can exploit properties of the problem statement and of the structure of the data
instances. Two such solvers were proposed recently. [2] described a method that delays certain constraints
based on the analysis of the problem specification. [6] introduced an approach to compute models directly
from a predicate-logic specification of constraints and a description of a data instance.

In this paper, we present a method that takes advantage of high-level program-data representations of
search problems as data-program pairs in the logic PS+ [5] to improve the performance of local-search
SAT solvers for propositional theories, possibly extended with boolean combinatigsedo-boolean
constraints. Local-search satisfiability methods (we refer to [8] for more details on that topic) that we are
interested in proceed by executing a prespecified numiseaf tries. A try starts with a random element
of the space of all truth assignments and performs a prespecified nunfibef,flips. Each flip modifies
the current truth assignment by changing truth values of a small number of atoms so that to optimize some
objective function, for instance to minimize the number of clauses that become unsatisfied after the flip. If

300 Lengning Liu and Mirostaw Truszcigki

at any time, the current truth assignment satisfies all clauses, the method reports that assignment and stops.
If all tries run their course without finding a satisfying assignment, the method reports failure and then
terminates. Local-search methods m@mplete The failure means only that no satisfying assignment was
found withinnf flips in any of thent tries, and not that no satisfying assignment exists at all.

Intuitively, the closer the initial truth assignment of a try to a satisfying assignment (model), the better
the chance that the try will succeed. In this paper, we introduce a method to select initial truth assignments
for tries based on that intuition. Specifically, létbe a local-search algorithm. Based on the input theory
T, our method first constructs a collectionrefaxationsof T', that is, theories whose models are easy to
compute and “almost” satisfy. It then uses the algorithm to compute models of the relaxed theories and,
finally, uses these models as starting points for tries whés executed of. In a sense, in our method,
the local-search algorithmd relies on itself to improve its own performanaed so, we call the method —
bootstrapping

The main difficulty in bootstrapping is to construct for a given input théois relaxations. To address
that issue we exploit representations of search problems as theories in the logic PS+ [5], a version of
predicate logic extended to model cardinality constraints. Bootstrapping is a general method and can be
used with every local-search algorithm, which follows the template described above and allows the user to
specify starting truth assignments for tries. We applied if8A T [10], one of the most successful local-
search SAT solvers for CNF theories, andii&6 AT (cc) [9], a local-search SAT algorithm for computing
models of theories in the language of propositional logic extended with cardinality constraints, a class of
pseudo-boolean constraints. Our paper provides a description of the bootstrapping method and presents
experimental results demonstrating its effectiveness for both local-search algorithms that we studied.

2 Bootstrapping for local-search algorithms

Let A be any local-search algorithm that falls into the category we described above. WelyFitet, s)
to specify a call to the algorithml for a propositional theory’, assuming thatd executesut tries and
that each try starts with a truth assignmentf s is not a complete assignment, then the truth values of
unassigned atoms are initialized for each try uniformly at random. To improve the performaAcevef
propose a method calldmbotstrapping

By At(T) we denote the set of atoms appearing in thébnA propositional theoryT” is arelaxation
of a propositional theory” if for every modelM of T, M N A¢(T") is a model ofT”. In general, not
every model ofl” extends to a model ¢f. However, ifT” is “close” to T, one might expect that models
of T" almostsatisfyT and, consequently, can serve as good initial assignments for tries Aveearches
for models ofT". Bootstrapping exploits that idea. We will discuss how to construct relaxations in the next
section. Here, we describe how bootstrapping uses them to organize search for models.

Given an input theor{’, letS = (T, ... T}) be a sequence of theories such that= T and, for every
1,1 <i < k—1,T;is arelaxation off; ;. Bootstrapping starts by executinf T}, nt, #). That call to
A searches for models @f; with initial assignments for tries generated randomly. If a model,/dayis
found, bootstrapping proceeds by executiid, nt, M7). That is, A now usesM; to generate starting
assignments for tries by randomly extending it to complete assignmenis ftfrthe call A(T%, nt, M;)
succeeds and finds a model, s&f, bootstrapping execute4(T5, nt, Ms), and so on. If at some level
i, A(T;,nt, M;_4) fails to find a model, bootstrapping returns to level 1 and starts again by executing
A(Th, nt,), up to a prespecified number wfstarts rst. If all restarts fail, the method terminates with
failure. If bootstrapping descends to the lekeind the callA(T}, nt, My_1) succeeds, the model it returns
is a model of the input theory'. Bootstrapping then returns that model and terminates with success. We
provide a more formal description of the method in Figure 2.1.

There are alternative ways in which one can organize the bootstrapping search. In particular, one can
allow the method to backtrack to intermediate levels before it ultimately backtracks to the top. Full version
of this work will contain experimental evaluation of several different strategies.

3 Logic PS+ and relaxations

The key difficulty in bootstrapping is to generate a sequence of relaxatioas(T, ..., Tx), in which
models of theoryl’; can be found faster than modelsif., can, and in which models &f; indeed satisfy
most of the clauses if;, ;. We discuss that issue now. We focus on propositional theories that arise when

Local Search with Bootstrapping 301

Input: S = (T4, ... Tx) — a sequence of relaxations of a the@rywith T, = T');
rst — an integer specifying the number of restarts
repeat rst times
fail :=falsg i:=0; My = 0;
while (not fasl)
=i+ 1,
A(Ti, nt, Mifl);
if (model found)
denote it with)M;;
if (i = k) outputM;, and terminate
elsefail:=true

Fig. 2.1.Bootstrapping of a local-search algorithin

solving search problems, and we take advantage of representations of search problems in the language of
predicate logic, an approach advanced in [5,6,2]

The logic we use is the logic PS+. For details on that logic, we refer the reader to [5]. Due to space
restrictions, we only illustrate its features by discussing it in the context of the graploring problem,
where the goal is to assign colors from a given set to vertices of a given graph so that no two adjacent
vertices are colored the same (or to determine that no such coloring exists).

We represent a data instance, a grapk= (V, E'), whereV is the set of vertices anfl is the set of
edges, and a set &fcolors{1, ..., k}, as the set of ground atoms

D(G, k) = {vtz(v): v € V} U {edge(v,w): {v,w} € E} U {color(i): 1 <i < k}.

It can be viewed as an instance of the relational schema consisting ofdatargredicatesymbolsuvtz and
color and a binandata predicatesymboledge.
To specify the problem, we encode its constraints as clauses in a version of the language of predicate
calculus, determined by predicate symbats, edge and color, and an additional binary predicate symbol
clrd that models assignments of colors to vertices.
Cl: crd(X,C) — vtz (X)
C2: clrd(X,C) — color(C)
C3: wvtz(X) — clrd(X,C) : color(C)
C4: clrd(X,C) A clrd(X,D) — (C = D)
C5: edge(X,Y) A clrd(X,C) A clrd(Y,C) — L.
The constructlrd(X, C) : color(C) in the clause (C3), not present in the standard language of predicate
calculus, represents the disjunction of all atoms of the fahti(X, ¢), wherec is a color.
Intuitively, the conditions (C1) and (C2) state that the only objects that get colored are vertices and the
only objects with which they can be colored are colors. (C3) states that each yegets assigned at
least one color. (C4) enforces that each vertex is assigned at most one color. (C5) ensures that two vertices
connected by an edge are assigned different colors.
The precise meaning of this representation is determined by grounding. To produce it, we stipulate that
ground atoms built ofitz, edge and color are trueif and only ifthey appear irD(G, k)*. For each clause,
we generate all its ground instances with respect to constants appeafiigrirk) and simplify them by
taking into account truth assignments determinedijg, k). The resulting theory consists of the following
clause$ and coincides with a standard propositional encoding of the gragioring problem:
C3,,: clrd(z,1) V clrd(z,2) V ...V clrd(z, k), for everyz € V
C4y,: clrd(z,c) A clrd(z,d') — L, foreveryzr e Vandl <c#c <k
C5;,: clrd(z,c) A clrd(y, c) — L, for every edggz, y} andl < ¢ < k.
Logic PS+ also supportsardinality atomsthat is, explicit constructs to model cardinality constraints.
For instance, we could represent clauses (C3) and (C4) with a single clause
CC: vtz(X) — {clrd(X, C)[C] : color(C)}1

! That is,D(G, k) provides a complete description of the data instance.
2 Clauses (C1) and (C2) do not contribute to the simplified grounding of the theory.

302 Lengning Liu and Mirostaw Truszcigki

stating that each verteX gets exactly one colof’. That clause grounds to the following collection of
clauses in the language of propositional logic with cardinality afoms
CCy: Helrd(x,c) : ce {1,...,k}}1, foreveryz € V.

Given a representation of a search problem in the logic PS+, we can generate not only the corresponding
propositional theory but also its relaxations. Here are some possibilities.

Enlarge or shrink extensions of data predicatesFor instance, in the graph-coloring problem, removing
some elements from the extension of the predicatgand the corresponding elements from the extension

of edge) and grounding the resulting theory yields a relaxation of the original one. In the case of represen-
tations of the hamiltonian cycle problem, enlarging the extension of the predigatenakes the problem

easier and leads to relaxations.

Increase or decrease constant®kepresentations of search problems often specify bounds on the size of a
structure that is sought, for instance, an upper bound on a vertex cover, or a lower bound on the size of a
cligue. By increasing the constant in the first case (decreasing it, in the second case) we obtain relaxations
of the initial theory.

Modify the problem. In the graph coloring problem, we can introduce an additional color and a new clause
bounding, by some constant, the number of times this new color can be used. When the constant is set to 0,
we obtain the original theory. Moreover, the larger the constant used, the “easier” the theory.

Our ultimate goal is to produce relaxations automatically from problem specifications in the logic PS+.
Some of the methods we listed above are clearly amenable to automation and we are presently pursuing this
direction. However, in this work, our objective is to demonstrate the effectiveness of bootstrapping and in
our experiments, we use relaxation sequences that we constructed ourselves based on PS+ specifications of
search problems we studied.

4 Experimental Results

We applied bootstrapping to two local-search solvét& AT [10] and WSAT (cc) (in its virtual-break-
countversion) [9]. Both algorithms proceed in tries and provide the user with an option to specify (fully or
partially) starting truth assignments for tries. Thus, they are amenable to our approach. W& Siie+r Boot

and WSAT (cc)+Boot for their “bootstrapped” versions.

We will now present results of experiments comparing the performantdéefT and WSAT (cc) with
their bootstrapped versions, and demonstrating that bootstrapping is effective. The benchmark problems we
used in experiments are: the graph 4-coloring problem, the graph vertex-cover problem, the Schur-number
problem and the van der Waerden-number problem. The graph-coloring and vertex-cover problems are well
known. In the instancé&(n, k) of the Schur-number problem, given positive integerand &, the goal
is to compute a partition of1,2,...,n} into k parts so that all parts are sum-free [7]. In the instance
W (n, k,1) of the van der Waerden problem, given positive integers and/, the goal is to find a partition
of {1,2,...,n} into k parts, so that no part contains an arithmetic progression of lérfig].

We used the same number of flips per try and the same noise ratio when compésin@ and
WSAT (cc) with their bootstrapped counterparts. We report the number of tries each takes to find the first
model (for bootstrapped versions, the count includes the tries from all levels of the bootstrapping search).
That measure is closely correlated with the running time, but is machine-independent. All of the following
experiments were done on two computers: Intel P4 1.5GHz with 1GB memory and Intel P4 3.2GHz with
1GB memory. Both platforms use Slackware Linux with kernel version 2.4.24 and gcc version 3.2.2.

For the graph 4-coloring problem, we randomly generated three families of 1000-vertex graphs con-
taining 3900, 3910 and 3920 edges, respectively. For each instance(graptV, E), we used the theory
representing its 4-colorability based on the clauses (C1)-(C5) ((C1), (C2), (C5) and (CC), respectively)
to test WSAT (WSAT (cc), respectively). To tesWSAT+Boot and WSAT (cc)+Boot, we constructed
relaxations of these theories. First, we defined a sequénce ... C V5 of subsets of’, such that
[Vi] = 900, |V2| = 925, ..., |V5| = 1000 (thus,V5 = V). These vertex sets specify subgraphg;ofThe
theories representing the 4-colorability of these subgraphs, based on clauses (C1)-(C5) ((C1), (C2), (C5)
and (CC), respectively) form a sequence of relaxations of the theory representing the 4-colorability of the
graphG. We used these sequences WIF6AT'+Boot (WSAT (cc)+Boot, respectively). In Table 1, we

3 A propositional cardinality atom is an expression of the fdfm , . . . , a,, }u. Its role is to restrict the number of
atomsa; that are true to be at leastand at mostu. A propositional clause in the extended language consists of
atoms, cardinality atoms or their negations [1,5,3].

Local Search with Bootstrapping 303

summarize the results by listing the average numbers of tries taken over all instances in each family and the
corresponding standard deviations.

Table 1.4-coloring problem

[Family of Graphs [[WSAT (cc)| WSAT (cc)+Boot]] WSAT| WSAT+Boot]|
1000 x 3900 (avg/std dev 106/244 19/21)| 91/107 19/24
1000 x 3910 (avg/std dev 145/214 15/11| 86/87 16/20Q
1000 x 3920 (avg/std dev] 300/329 24/38|225/274 23/30

For each algorithm, the bootstrapping significantly improves the performance (on average, by the fac-
tor of 9 for WSAT (cc) and 7 for WSAT). We also experimented with harder instances of the problem
(obtained by generating graphs with more edges). For a family of 50 graphs with 1000 vertices and 4100
edges, methods with bootstrapping found solutions in 49 cases using on average 2611 tries. Methods with-
out bootstrapping are unable to find solutions in any of these 50 cases, even with as many as 13000 tries per
instance.

For the vertex-cover problem, we randomly generated 50 graphs having 2000 vertices and 4000 edges.
Then, for each grap&f we set the upper bourig; on the size of the vertex cover so tH&SAT (cc)+Boot
can find a solution but requires several tries. In each case, the bound is in the range 1030-1049. For graphs of
that size and the bound on the vertex-cover set at about half of the size of the vertex set the use of cardinality
atoms when modeling the problem constraints is critical. CNF encodings are too largésto¥” to be
effective. Therefore, we do not report results on the performand83A T'(+Boof) on these instances. For
each grapltz, the relaxation sequence we used Wil AT (cc)+Boot is the sequence of theories encoding
instances of the vertex-cover problem t@with the upper bound on the vertex cover decreasing (with step
1) from 1050 down td:. Clearly, each such theory is a relaxation of its successor.

Table 2. Vertex-cover problem

l [WSAT (cc)| WSAT (ce)*+ Bool]

of tries(avg/std deyv 98/140Q 46/101
Success rate 82% 100%

The results for the vertex-cover problem (Table 2) also demonstrate the effectiveness of bootstrapping.
Within the prespecified number of tries per instance set at 80847 (cc)+Boot finds solutions forll
the instances whildVSAT (cc) only for 82% of them. In addition, the average number of tries to the
first solution (over all instances for which both methods found solutions) is about 2 times smaller for the
bootstrapped version.

For the Schur-number problem, we considered its insta#{88, 5). This instance has solutions. In
fact, every instancé(n, 5), wheren < 160, does (the larget, the harder the problem gets, it is not known
whether the instancg(161, 5) has solutions). We chose the instais@38, 5) for our experiments as even
that instance is already very hard for typical local-search solvers. We used theories representing instances
S(n,5), wheren is even andl18 < n < 138, as the sequence of relaxations as inpuit§AT+Boot
and WSAT (cc)+Boot. Similarly, for the van der Waerden-number problem, we considered the instance
W (120, 5, 3) (which is satisfiable). The encodings of the instanidé&s:, 5, 3), 110 < n < 120, form the
input to algorithmsWSAT+Boot and WSAT (cc)+Boot.

Our results for the Schur and van der Waerden problems, presented in Table 3, provide additional con-
firmation of the effectiveness of bootstrapping (improvement roughly by the factors between 4 and 10).
They represent averages over 10 independent executions of the algorithms on the irfstanic3sy and
W (120, 5, 3), and the corresponding standard deviations. Another fact to mention is that, the methods with
bootstrapping have 800% success rate in the ten runs for #11&120, 5, 3), while the ones without boot-
strapping only hav80% and40% success rates, respectively.

304 Lengning Liu and Mirostaw Truszcigki

Table 3. Schur and van der Waerden Problem

[Problem [WSAT (cc)| WSAT (cc)+Boot]]| WSAT| WSAT+Boot|
S(5,138) (avg/std dev) 811/834 78/95|763/982 91/55
W (120, 5, 3) (avg/std deV| 438/322 117/130/605/347 125/81

We also mention thatV.SAT+Boot and WSAT (cc)+Boot found solutions for the instancég160, 5)
(in 5086 and 247 tries, respectively), aitd(125, 5, 3) (in 19155 and 2359 tries, respectively), matching the
best bounds known so far. Even with the 5-fold increase in the numbers of iffigd,7 and WSAT (cc)
were unable to find solutions for these two instances.

5 Conclusions

We introduced bootstrapping, a general method to improve the performance of local-search satisfiability
solvers. We demonstrated that bootstrapping is highly effectivéi#8A T and WSAT (cc), the two solvers
that we tested.

In the paper, we presented results concerning just one strategy for the bootstrapping search when, after
failure, the search is resumed from the beginning. In our future work, we will consider alternative strategies
of backtracking to intermediate levels.

Bootstrapping requires a sequence of relaxations of input theories. In our work so far, we constructed
these relaxations “by hand”, based on high-level representations of input theories in the language of the
logic PS+. Our experience indicates that the process can be automated and we are currently pursuing this
direction.

References

1. B. Benhamou, L. Sais, , and P. Siegel. Two proof procedures for a cardinality based language in propositional
calculus. InProceedings of STACS-9dages 71-82. 1994,

2. M. Cadoli and T. Mancini. Automated reformulation of specifications by safe delay of constraints. In Alan M.
Frisch, editor,Proceedings of the Second International Workshop on Modelling and Reformulating Constraint
Satisfaction Problemgages 33—-47, 2003. (In conjunction with CP-2003).

3. H.E. Dixon and M.L. Ginsberg. Inference methods for a pseudo-boolean satisfiability soN@nockedings of
AAAI-2002 pages 635-640, 2002.

4. M.R. Dransfield, V.M. Marek, and M. Truszdzski. Satisfiability and computing van der waerden numbers. In
Proceedings of SAT-200BNCS 2919, Springer Verlag, 2003.

5. D. East and M. Truszchgki. Propositional satisfiability in answer-set programming.Placeedings of Joint
German/Austrian Conference on Atrtificial Intelligence, KI'20@hges 138-153. LNAI 2174, Springer Verlag,
2001. (Full version afttp://xxx.lanl.gov/abs/cs.LO/0211033

6. M.L. Ginsberg and A.J. Parkes. Satisfiability algorithms and finite quantlflcatlorﬁ’rdceedlngs of KR-2000
pages 690-701. Morgan Kaufmann Publishers, 2000.

7. R.L. Graham, B.L. Rothschild, and J.H. Spenétamsey TheonWiley, 1980.

8. H.H. Hoos and T. &tzle. Local search algorithms for sat: An empirical evaluation. In I. Gent, H. van Maaren,
and T. Walsh, editorsSAT2000: Highlights of Satisfiability Research in the Year 200ume 62 ofFrontiers in
Artificial Intelligence and Applicationgages 43—88. 10S Press, Amsterdam, 2000.

9. L. Liu and M. Truszczgiski. Local-search techniques in propositional logic extended with cardinality atoms. In
Proceedings of CP-2008NCS 2833, Springer Verlag, 2003.

10. B. Selman, H.A. Kautz, and B. Cohen. Noise strategies for improving local searéttodeedings of AAAI-94
Seattle, USA, 1994.

