A Random Constraint Satisfaction Problem That Seems
Hard for DPLL

Harold Connamacher

University of Toronto
Department of Computer Science
10 King’s College Road
Toronto, Ontario M5S 3G4
Canada
hsc@cs.toronto.edu

Abstract. This paper discusses an NP-complete constraint satisfaction problem which ap-
pears to share many of the threshold characteristics of SAT but is similar to XOR-SAT and
so is easier to analyze. For example, the exact satisfiability threshold for this problem is
known, and the problem has high resolution complexity. In this paper, we prove the problem
appears hard for DPLL. Specifically, if we pick a problem instance at random with con-
straint density higher than some given threshold but below the satisfiability threshold, a
DPLL backtracking algorithm using the unit clause heuristic will, with uniformly positive
probability, take exponential time to find a satisfying assignment.

1 Introduction

The satisfiability threshold conjecture is that there exists a value ¢* such that a random SAT
formula on n variables and cn clauses, with n tending to infinity, is almost surely unsatisfiable if
¢ > ¢* and almost surely satisfiable if ¢ < ¢*. From experimental evidence, the threshold for 3-SAT
is ¢* &~ 4.2 [1,2]. Computer scientists have yet to prove this, and the current state of the research
has 3.52 [3,4] < ¢* < 4.506 [5]. Even the existence of any exact threshold ¢* has not been proven
but something close has [6].

The satisfiability threshold is known for 2-SAT [7-9], and considering formulae with a mixture
of 2- and 3-clauses (the (2 + p)-SAT model introduced by [10]), an exact threshold is known if
at most % of the clauses are 3-clauses. For more than % 3-clauses, a range for the threshold, if it
exists, is given [11].

Researchers noticed that problems drawn from near the satisfiability threshold appear to require
exponential time to satisfy while problems drawn from well below the threshold can be solved
quickly [1]. It is known that if ¢ > 3.81 DPLL with the unit clause heuristic will take exponential
time [12] while for ¢ < 2.66 the running time of the algorithm will be linear [13]. For generalized
unit clause, the range is 3.003 [14] < ¢ < 3.98 [12]. Experimental evidence supports the lower
bounds as the threshold for linear versus exponential running time of DPLL with either the unit
clause or generalized unit clause heuristic [15].

Many other NP-complete problems have similar threshold phenomena, and in statistical me-
chanics, these problems correspond to spin-glass like models over random graphs at zero tempera-
ture [16]. The simplest non-trivial such model is called the p-spin model (or k-spin in the notation
of this paper) and at the zero temperature, this is k-XOR-SAT [17]. In XOR-SAT, a solution
must satisfy an exclusive-or on each clause, rather than a disjunction, and being a simpler model
than SAT, XOR-SAT appears to be easier to analyze. For example, the satisfiability threshold for
3-XOR-SAT is known [17,18]. In this paper, we present an NP-complete constraint satisfaction
problem which generalizes XOR-SAT. As a result, all the theorems proven in this paper also apply
to XOR-SAT. For example, even though XOR-SAT is in P, a corollary of the main theorem of this
paper is that at worst case DPLL with the unit clause heuristic will need exponential time to find
a solution.

If we consider XOR-SAT as a constraint satisfaction problem with constraints on k variables,
the key property which makes XOR-SAT simple to analyze is that each constraint is uniquely
extendible. That is, for each possible assignment to k& — 1 variables of a constraint, there is a

4 Harold Connamacher

unique legal value for the kth variable. The NP-complete problem considered is the generic uniquely
extendible constraint satisfaction problem (k, d)-UE-CSP. As with XOR-SAT, (k, d)-UE-CSP seems
easier to analyze than SAT, and [19] gives the satisfiability threshold of (3, d)-UE-CSP, but unlike
XOR-SAT, no known polynomial time algorithm exists which almost surely solves a satisfiable
instance of (k,d)-UE-CSP.

In this paper, we prove that a DPLL backtracking algorithm using the unit clause heuristic
will, with uniformly positive probability, take exponential time to find a satisfying assignment on
a random instance of (3,d)-UE-CSP taken from below the satisfiability threshold. As part of the
proof, we study threshold behavior for a UE-CSP with a mixture of clauses of size 2 and 3 similar
to the (24 p)-SAT model, and we prove theorems similar to the known results for (24 p)-SAT. As
a result, for (3, d)-UE-CSP, we have three threshold values similar to those known and conjectured
for 3-SAT: ¢* > c. > ¢; where ¢* is the satisfiability threshold, c. is the lowest density for which we
can prove DPLL with unit clause requires exponential time, and ¢; is the highest density for which
unit clause alone will find a satisfying assignment in linear time. For 3-SAT, it is conjectured that
ce = ¢1, and thus it would be interesting if we could prove this equality holds for (3,d)-UE-CSP.

Although the techniques used in this paper are similar to those for proving comparable theorems
about SAT, the results are not quite the same. For example, where it is possible to prove behavior
almost surely with SAT, we often can only prove with uniformly positive probability for (k,d)-UE-
CSP.

1.1 (k,d)-UE-CSP

In (k,d)-UE-CSP, each constraint is over a k-tuple of variables, each variable must take a value
from the domain {0, ...,d—1}, and every constraint is uniquely extendible. Note that k-XOR-SAT
is exactly (k,2)-UE-CSP. We will denote the problem UE-CSP when we allow a mixture of clause
sizes and when d may be an arbitrary constant. We always assume d > 2.

In this paper, each constraint of the CSP is called a clause, and constraints of size i are denoted
i-clauses. In keeping with terminology for SAT, each instance of the CSP is called a problem or a
formula.

For d < 3, the problem is in P, but in [19], the following theorems are proven.

Theorem 1. (3,4)-UE-CSP is NP-complete.
Theorem 2. The satisfiability threshold for random (3,4)-UE-SAT is ¢* = .917935... .

Theorem 3. For any constant ¢ > 0, the resolution complexity of a uniformly random instance
of (3,4)-UE-SAT with n variables and cn clauses is almost surely 29

Note that the threshold for (3,4)-UE-CSP is exactly the same as for 3-XOR-SAT [17,18]. In
addition, this threshold is true for all d > 3.

2 Main Theorem

We write a sequence of events &, holds almost surely (a.s.) if lim,,_,, Pr(&,) = 1 and &, holds
with uniformly positive probability (w.u.p.p.) if liminf, . Pr(&,) > 0.

The Davis-Putnam-Logemann-Loveland (DPLL) algorithm forms the basis of most current
complete SAT solvers. The algorithm is a simple backtracking framework. At each step, an unas-
signed variable v is assigned a value. Any clause which is satisfied by the assignment is removed, v
is removed from any clauses in which it occurs, and the constraint on those clauses is appropriately
modified. DPLL then recurses on this reduced formula. If a conflict occurs, DPLL backtracks and
tries a different value for v. Note that for UE-CSP, only singleton clauses will be removed.

One of the variations in DPLL is in the procedure for choosing the next variable. A method
which is used in many SAT solvers is the unit clause (UC) heuristic which states that if clauses of
size 1 exist, the next chosen variable is from one of the singleton clauses. For simplicity of analysis,
if no clause of size 1 exists, the next variable is chosen randomly.

A Random Constraint Satisfaction Problem That Seems Hard for DPLL 5

Note 4. A key observation, see e.g. [20], is that until the algorithm backtracks, the subproblem
produced at each step by UC is uniformly random. Specifically, the 2-clauses form a uniformly
random instance of (2,d)-UE-CSP, and the 3-clauses form a uniformly random instance of (3, d)-
UE-CSP.

In order to model the subformulae produced by a running of DPLL, we introduce the random
((2+ p), d)-UE-CSP model, similar to the (2 4+ p)-SAT model. In this model, a UE-CSP instance
on n variables and m constraints has pm clauses of size 3 and (1 — p)m clauses of size 2.

Experiments suggest that there is an exact threshold for (2+p)-SAT, and if the search algorithm
produces a subformula which falls on the unsatisfied side of the threshold, the algorithm will take a
long time to backtrack out of the subformula [15]. This paper will prove (k, d)-UE-CSP has similar
behavior.

The main theorem is as follows.

Theorem 5. A DPLL algorithm using the unit clause heuristic will take exponential time w.u.p.p.
on a uniformly random instance of (3,4)-UE-CSP with n variables and at least g clauses.

Proof. From Lemma 11, w.u.p.p. the unit clause heuristic will guide DPLL to a subformula with
n/ variables, (3 — €) n’ 2-clauses and 3n’ 3-clauses where 3 > (5 +¢€), n’ > én for some § > 0 and
which is a uniformly random UE-CSP on those parameters. From Lemma 7, such a configuration
is a.s. unsatisfiable. From Lemma 12, DPLL will require 29(n") steps to backtrack out of this

configuration, w.u.p.p. a

Theorem 5 is a stronger result than the corresponding theorems for SAT because in the SAT
theorems, the threshold for exponential behavior is below the conjectured satisfiability threshold
but above the proven lower bound for the satisfiability threshold.

3 Threshold Behavior for ((2 + p), d)-UE-CSP

One technique for analyzing the structure of an instance C' of a constraint satisfaction problem is
to consider the underlying hypergraph H of C. We define H to have as vertices the variables of
C, and a set of variables are joined in a hyperedge iff that set forms a constraint in C. As with
clauses, we denote a hyperedge of size i as an i-edge.

One example of this technique is to show the satisfiability threshold for (2, d)-UE-CSP is 1.

Lemma 6. Forc < %,

constraints is w.u.p.p. satisfiable, and for ¢ >

a uniformly random instance C of (2,d)-UE-CSP with n variables and cn
%, it is a.s. unsatisfiable.

Proof. Consider the random graph H which is the underlying hypergraph of C'. The proof follows
from the well known property of random graphs on n vertices and cn edges. If ¢ < %, H has a.s. at
most a constant number of cycles, and if ¢ > %, the number of cycles in H grows unbounded, a.s.
From the observation that each cycle in H creates a possible conflict in C, the lemma follows. O

Let ¢, be the satisfiability threshold for ((2 + p), d)-UE-CSP, if it exists. To get a nontrivial
upper bound for ¢,, we count the expected number of solutions to a random instance of ((2+p), d)-

UE-CSP. For both (2,d)-UE-CSP and (3,d)-UE-CSP, a random assignment satisfies each clause
with probability 4. Thus, if S, is the set of solutions for any ((2 + p),d)-UE-CSP formula on n
variables, the expected number of solutions is

Bep(s,) =" (5)

which is goes to 0 as n goes to infinity if ¢ > 1. Thus, from Markov’s Inequality, we get ¢, < 1 and
the following lemma.

Lemma 7. For any € > 0, a uniformly random UE-CSP instance with (% — e) n 2-clauses and fn
3-clauses with B > (% + e) s a.s. unsatisfiable.

6 Harold Connamacher

A second technique we will use in the paper is to model the behavior of UC, without back-
tracking, by a system of differential equations. Let C;(t) be the number of i-clauses at step ¢ of the
algorithm. Note that at each step of the algorithm, an unassigned variable is given a value. Thus,
if no backtracking occurs, the number of steps is the same as the number of assigned variables.
Let be the number of variables assigned a value, ¢;(x) the number of i-clauses with ¢; and «
normalized to the range [0, 1]. Then using the same justifications as [11,20] for the behavior of UC
on 3-SAT, we have

des 3cz(z)

de — (1—x)

dey 3es(z) 2c9(z)
de (1—-z) (1-2)

and, by a theorem of [21], for any € > 0 and for 0 <t < (1 — €)n, a.s.
Ci(t) = ci(t/n) - n+o(n).
Solving the above differential equations gives

Cs(t) = c3(0)(1 = t/n)* -+ o(n) (1)
Ca(t) = (c2(0) + 3e3(0)(t/n) (1 — t/n)* - n + o(n) (2)

The important observation is that as long as no clause of length 0 is generated, no contradiction
is reached. A clause of length 0 will only be generated if we have more than one clause of length
1, and the expected number of clauses of length 1 generated at step t is 2C5(t)/(n — t). So if this
density is bounded by (1 — §) for some 6 > 0, we will not expect to generate contradictions. This
observation is summarized in the following lemma which is a corollary of lemmas in [22] and [11,
20].

Lemma 8 ([11]). Fizd,e > 0 and let to = n—en]. If for all0 < t < 1o a.s. Co(t) < £(1-0)(n—t)
then w.u.p.p. Cy(to) + Co(to) = 0.

Thus we can use the differential equations (1) and (2) to a.s. trace the first g = n — |en| steps
of UC and bound the probability that UC fails. For Lemmas 9 and 10, we need to deal with the
final n — t(steps. By Lemma 8, after step ¢y we are left with a formula with en variables, w.u.p.p.
no clauses of length 1, and a.s. Cs(tg) + Ca(to) clauses of length at least 2 where

Cs(to) + Calto) = 03(0)e3n + (c2(0) 4 3¢3(0)(1 — e))e2n
< re’n

for some constant r > 0. Observe that we can pick e small enough so that, by a similar random
graph argument as Lemma 6, these remaining clauses will a.s. induce at most a constant number
of cycles. Thus, w.u.p.p. UC will find a satisfying assignment.
Lemma 9. Forp< 1 ﬁ.
Proof. Plugging ¢3(0) = cp and ¢2(0) = ¢(1 — p) into (1) and (2) and adding the bound that
Ca(t) < 3(1—6)(n —t) gives

2¢Bpr —p+1)(1—2) <1 (3)

where x = i

Note that if p< 1 , the Lh.s. of (3) is a decreasing function of z and thus the inequality holds
iff it holds for x = 0, and plugging in x = 0 gives

2(1-p)
Applying Lemma 8 and the above observation completes the proof. 0O

Likewise, by plugging ¢3(0) = ¢ and ¢2(0) = 0 into (1) and (2) gives the following lemma.

A Random Constraint Satisfaction Problem That Seems Hard for DPLL 7

Lemma 10. Let C be a uniformly random instance of (3,d)-UE-CSP with n variables and at most
%n clauses. Then w.u.p.p. DPLL with UC will find a satisfying assignment without backtracking.

Finally, we use this technique to prove the following lemma.

Lemma 11. Let C be a uniformly random instance of (3,d)-UE-CSP with n variables and %
clauses. Then w.u.p.p. DPLL with UC will reach a subproblem C' of C which hasn' > %n variables,
1

(5 - e) n' 2-clauses and fn’ 3-clauses, 8 > (% + e), with all such subproblems equally likely.

Proof. Let ¢3(0) = 0 and ¢3(0) = A and find a ¢’ = 7n such that Co(') = (3 — €) n and Cs(t') >
1
(5 — E) n.
Note that Cs(t) is a decreasing function while Cy(t) is initially an increasing function. So we

find the point ¢, at which C3(t.) = Ca(t.). This gives 1 — % = 3% and so t, = in. Plugging t.
into Cs(t) yields 3 (n — in) = A (1 - %)Bn and thus A = 3.
By observing that for 0 < z < f, 9¢2 < _d% we can pick ¢/ < t, and get the desired result.

n’ dx dx ?
Note that Cy(t) < 2(n —t) for all 0 < ¢ < t.. Thus, by Lemma 8 w.u.p.p. no conflict occurs
implying DPLL will not backtrack before reaching this configuration, and thus by Note 4 this

configuration is uniformly random over all such mixed formulae with these clause densities. O

4 Resolution Lower Bound

The final step to prove Theorem 5 is the following lemma.

Lemma 12. For any A,e > 0, DPLL will require 2™ steps w.u.p.p. to backtrack out of a uni-
formly random UE-CSP instance with (% — e) n 2-clauses and An 3-clauses, if that instance is
unsatisfiable.

From techniques developed in [23-25], exponential running time for DPLL on an unsatisfiable
formula is a consequence of the formula requiring an exponential size resolution proof of unsat-
isfiability, and the shortest resolution proof for a CSP has exponential size, a.s., if there exists
constants «, (> 0 such that a.s. the following three conditions hold.

1. Every subproblem on at most an variables is satisfiable.

2. Every subproblem on v variables where %om < wv < an has at least {n variables of degree 1.

3. If x is a variable of degree 1 in a CSP f then, letting f’ be the subproblem obtained by removing
z and its constraint, any satisfying assignment of f’ can be extended to a satisfying assignment
of f by assigning some value to z.

Note that the third condition is trivially true for UE-CSP. These techniques and the observation
that w.u.p.p. the (% — e) n 2-clauses do not induce a cycle reduce Lemma 12 to the following
lemma.

Lemma 13. For any A,e > 0, consider a random UE-CSP problem C on n wvariables with An
3-clauses and (% —e)n 2-clauses where every such formula is equally likely. If C has no cycle in the
2-clauses, then a.s.:

(a) every subformula on at most an variables is satisfiable, and

(b) every subformula on v variables where %cm < wv < an has at least {n variables of degree
<1.

This proof of this lemma closely follows a similar one from [25].

Proof. Consider any ((2 4 p), d)-UE-CSP problem C and its underlying hypergraph H. A pendant
path of H is a path of 2-edges whose internal vertices each have degree 2 and do not lie in any
3-edge of H. Trivially, a single vertex is a pendant path of length 0.

For any r > 1, a Y, configuration consists of:

— r pendant paths and
— a collection of t5 additional 2-edges and t3 additional 3-edges whose vertices are all endpoints
of the r pendant paths for some ts, t3 with %tz + 3t3 > %ro + %7‘1

8 Harold Connamacher

where 7 is the number of pendant paths of length 0 and ry = r — rg.

Let P be a set of r pendant paths of H such that (i) every vertex of H appears on exactly one
path and (ii) P is minimal in the sense that it is impossible to form a collection of r — 1 paths
satisfying (i) by adding a 2-edge from H to P.

If C" is a minimally unsatisfiable subformula of C, then €’ must be connected and have no
vertices of degree < 1. By Lemma 14, C' must have a Y, configuration for some r > 1. By
Lemma 15, there a.s. can not be a Y, configuration on at most an variables so C a.s. has no
unsatisfiable formula on at most an variables.

Consider any subformula F' on v variables where %om < v < an. Since a.s. every such formula
does not have a Y, configuration, then a.s. for each such F', there exists an r» > 1 such that F' has at
least 7 variables of degree <1 and a collection of r pendant paths which contain all its variables.

Now, we show that r must be ©(n). Let G be the underlying hypergraph of F. By Lemma 16, G
has a.s. at most 2ne?0~? pendant paths of length 6. Since any path of length more than 6 contains
a path of exactly @, G has a.s. at most 2ne?0~%*! vertices on pendant paths of length at least 6.
Thus, there exists 7 > 0 such that for all § > 3, G has at most ne™™ vertices on pendant paths
of length at least 6. Pick 0 so that e~ < - Thus, at least §n variables of G lie on paths in P of
length less that §. Therefore, r > n and G has at least (n vertices of degree < 1 for ¢ = 155.
The following two lemmas closely follow lemmas from [25].

Lemma 14. If H has at most 5 vertices of degree <1 and no cycles in the 2-edges then H has a
Y, configuration.

Proof. Let P be a minimal set of pendant paths of H such that every vertex of H appears on
exactly one path. Let r be the number of paths in P, let ry be the number of paths of length 0,
and let 71 = r — ry.

We call the edges of P path edges and the other edges of H mon-path edges. Note that every
non-path edge contains only vertices that are endpoints of the paths in P. Let ¢5 be the non-path
2-edges, and let t3 be the (non-path) 3-edges. We will prove H has a Y, configuration by proving
%tg +3t3 Z %7’0 + %7”’1.

We define a set X to contain exactly those vertices which are an endpoint of a path of P. Thus,
|X| = 2r1 + ro. We form a graph G with vertex set X, and the edges of G are the 2-edges of H
which do not lie on a path of P. Note that t; = |E(G)].

Let I; be the number of components of G with exactly one vertex, and let ls be the number of
components with exactly two vertices. The remaining components have size at least 3, and thus
these components contain |X| — Iy — 2y vertices and at least 2(|X| — Iy — 2I3) edges. Therefore,
to >y + %(|X\ —l; — 2l5) and rearranging gives %tz + 1 + %ZQ > | X| =ro+ 2r.

Now note that every vertex which had degree 0 in G must either be in a 3-edge or have degree
at most 1 in H. Also note that every component of G which has size 2 must have at least 1 vertex
which is either in a 3-edge or has degree at most 1 in H. Otherwise, the two vertices are either the
two endpoints of the same path in P which would form a cycle in the 2-edges of H, or endpoints
of different paths in P which would violate the minimality of P. This yields l; + Iy < 3t3+ s where
s is the number of vertices of degree at most 1 in H. Thus,

3 1 3 3
ro + 2r1 < §t2+l1—|—§lz < §t2—|—ll—|—l2 < §t2+3t3+8.
Since s < %, H has a Y,. configuration. O

Lemma 15. For any A,e > 0, consider a random hypergraph H on n vertices with An 3-edges
and (% — e)n 2-edges where every such graph is equally likely. There is some constant o > 0 such
that a.s. H has no Y, configuration for any r < an.

Proof. Fix an r < an and compute the expected number of Y,. configurations.

A Random Constraint Satisfaction Problem That Seems Hard for DPLL 9

Consider any list of 2-edges e, ..., ex. The probability that they all appear in H is

(;2;2)) ((% — 0

for some 0 < €’ < e.

As before, we let X be the set of vertices where are endpoints of the pendant paths of the
Y, configuration. There are at most (f) n"* choices for the endpoints of the r paths. Suppose the
number of 2-edges in the paths are I, ...,l, and let L = I; 4+ --- +[,. Then there are n~" choices
for the interior vertices of the paths. We multiply by the probability that all L of these edges
appear and that there are tg other 2-edges and t3 3-edges on the endpoints. First, assume that ¢,

and t3 are both at least 155. This gives an upper bound of

L

T () ()) ()

1 ta ts 2to+43t3
ne\r” sne Ane 2r
< (= ri—r [2777 = __ 9 N\L
_(’I’>n (tg) (td) (n) Z(l 26)
lyeonly
< (z)t2+2t3—r1 etattatr Atsgta+3ts 1 gta+ts Z(l _ 261)1 (4)
n 1>0
< (ﬂ)tzﬁ-?te,—ﬁ (5)
n
rylr,a>7“/9
< (— 6
< (& (6)

for some 7 > 0. Inequality (4) follows because ta,t3 > 15, (5) follows because to+2t3—2rg—2r1 >

0, and (6) follows because 3 +2t3 — 11 = (to+3t3) —11 > g(ro+3ry) —r1 > 3(37"1) - =5
If t; < 155 then t3 > (7 ﬁ)ro + (230)1"1 For such a to, compute the expected number of

collections of r pendant paths along With t3 3-clauses on their endpoints. As above, the expected

number is upper bounded with:
T

ey () (3 (o) <™

1>0

for some > 0.
If t5 < 165 then ty > (§ — 135)r0+ (%2 1(2)0)7"1 For such a t3, and similar to above, the expected
number of collections of r pendant paths and to 2-edges on the endpoints is upper bounded by:

T

1 to 2to
ne\" ., (gne | X 1— 92! (73r>r/11
(T) " (tz n Z(6) < n

1>0

10 Harold Connamacher

for some 73 > 0.
Let v = max{v1,v2,v3}. As there are O(r) choices for ts,t3, it suffices to show that

> (3)" <ot

The first logn terms of this sum add up to at most O (Olg/lnl) and if a < % then the rest add up
to at most > ;50,4 (%)1/11 =o(1). O
The proof of this final lemma is an exercise in the second moment method on random graphs.

Lemma 16. For any e > 0 and any ¢ > 0, a uniformly random graph with n vertices and (% — 6) n
edges has a.s. at most (1 + c)ne?0=% pendant paths of length 6.

Proof. Using a well known property of random graphs, we can consider a model with n vertices
and each of the (g) edges existing independently with probability p = %

Let X be the number of pendant paths of length 8. The expected value of X is bounded above
by the number of choices for the 6 vertices, the probability that each edge on the path exists,
the probability there is no edge from the interior path vertices to the rest of the graph, and the
probability the path is induced:

Exp(X) < <Z>p61(1 _p)(nfe)(g,Q)(l _p)(Ggl)

~ (@)0 1 9_169+2
0 n
=ne?0 Y.

Using the second moment method, we show the expected number is highly concentrated about
its mean by summing over all sets of 6 vertices which intersect with a given path multiplied by
the probability that the intersecting set is also a pendant path. In the calculations below, k is the
number of the 6 vertices which intersect with the given path.

. 22 <n ; 0>pk(1 _)=k nk=1(g _ p(5)
N (n ; 0>p91(1 _ p)(n2042)(0-2) (] _ p)(";l)}
() () o)

k=1

~ Exp(X)*(1 + o(1)).

Exp(X?) = Exp(X)

~ Exp(X

So by Chebyshev’s Inequality, the probability that, for any ¢ > 0, X > (1 + ¢)Exp(X) is
o(1). o

References

1. Selman, B., Mitchell, D.G., Levesque, H.J.: Generating hard satisfiability problems. Artificial Intelli-
gence 81 (1996) 1729

2. Kirkpatrick, S., Selman, B.: Critical behavior in the satisfiability of random boolean expressions.
Science 264 (1994) 1297-1232

3. Hajiaghayi, M.T., Sorkin, G.B.: The satisfiability threshold of random 3-SAT is at least 3.52.
arxiv.org/abs/math.C0O/0310193 (2003)

4. Kaporis, A.C., Kirousis, L.M., Lalas, E.G.: Selecting complementary pairs of literals. In: Electronic
Notes in Discrete Mathematics. Volume 16., Elsevier (2003)

5. Dubois, O., Boufkhad, Y., Mandler, J.: Typical random 3-SAT formulae and the satisfiability threshold.
Technical Report TR03-007, Electronic Colloquium on Computational Complexity (2003)

A Random Constraint Satisfaction Problem That Seems Hard for DPLL 11

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Friedgut, E.: Sharp thresholds of graph properties, and the k-SAT problem. Journal of the American
Mathematical Society 12 (1999) 1017-1054

Chvétal, V., Reed, B.: Mick gets some (the odds are on his side). In: Proceedings of the 33rd Annual
Symposium on Foundations of Computer Science. (1992) 620-627

Goerdt, A.: A threshold for unsatisfiability. Journal of Computer and System Sciences 53 (1996)
469-486

Fernandez de la Vega, W.: On random 2-SAT. Manuscript (1992)

Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: Phase transitions and search
cost in the 2 + p-sat problem. In: 4th Workshop on Physics and Computation. (1996)

Achlioptas, D., Kirousis, L.M., Kranakis, E., Krizanc, D.: Rigourous results for random (2 + p)-SAT.
Theoretical Computer Science 265 (2001) 109-129

Achlioptas, D., Beame, P., Molloy, M.: A shart threshold in proof complexity yields lower bounds for
satisfiability search. In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing.
(2001) 337-346

Chao, M.T., Franco, J.: Probibalistic analysis of two heuristics for the 3-satisfiability problem. SIAM
Journal of Computing 15 (1986) 1106-1118

Frieze, A., Suen, S.: Analysis of two simple heuristics on a random instance of k-SAT. Journal of
Algorithms 20 (1996) 312-355

Cocco, S., Monasson, R., Montanari, A., Semerjian, G.: Approximate analysis of search algorithms
with “physical” methods. arxiv.org/abs/cs.CC/0302003 (2003)

Martin, O.C., Monasson, R., Zecchina, R.: Statistical mechanics methods and phase transitions in
optimization problems. Theoretical Computer Science 265 (2001) 3—67

Mézard, M., Ricci-Tersenghi, F., Zecchina, R.: Alternative solutions to diluted p-spin models and
XORSAT problems. Journal of Statistical Physics 111 (2003) 505-533

Dubois, O., Mandler, J.: The 3-XORSAT threshold. In: Proceedings of the 43rd Annual IEEE Sym-
posium on Foundations of Computer Science. (2002) 769-778

Connamacher, H.,; Molloy, M.: The exact satisfiability threshold for a potentially intractable random
constraint satisfaction problem. In Preparation (2003)

Achlioptas, D.: A survey of lower bounds for random 3-SAT via differential equations. Theoretical
Computer Science 265 (2001) 159-185

Wormald, N.: Differential equations for random processes and random graphs. Annals of Applied
Probability 5 (1995) 1217-1235

Chao, M.T., Franco, J.: Probabilistic analysis of a generalization of the unit clause literal selection
heuristic for the k-satisfiability problem. Information Science 51 (1990) 289-314

Ben-Sasson, E., Wigderson, A.: Short proofs are narrow - resolution made simple. Journal of the ACM
48 (2001) 149-169

Mitchell, D.: Resolution complexity of random constraints. In: Principles and Practices of Constraint
Programming — CP 2002. (2002) 295-309

Molloy, M., Salavatipour, M.: The resolution complexity of random constraint satisfaction problems.
Preprint. Extended abstract in the Proceedings of FOCS 2003, 330-339 (2003)

