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Abstract. Certifying a SAT solver for unsatisfiable instances is a computationally hard
problem. Nevertheless, in the utilization of SAT in industrial settings, one often needs to be
able to generate unsatisfiability proofs, either to guarantee the correctness of the SAT solver
or as part of the utilization of SAT in some applications (e.g. in model checking). As part
of the process of generating unsatisfiable proofs, one is also interested in unsatisfiable sub-
formulas of the original formula, also known as unsatisfiable cores. Furthermore, it may by
useful identifying the minimum unsatisfiable core of a given problem instance, i.e. the smallest
number of clauses that make the instance unsatisfiable. This approach is be very useful in AI
problems where identifying the minimum core is crucial for correcting the minimum amount
of inconsistent information (e.g. in knowledge bases).

1 Introduction

The utilization of SAT in industrial settings has motivated work on certifying SAT solvers [14].
Given a problem instance, the certifier needs to be able to verify that the computed truth as-
signments indeed satisfy a satisfiable instance and that, for an unsatisfiable instance, a proof of
unsatisfiability can be generated. Certifying a SAT solver for a satisfiable instance is easy; certi-
fying a SAT solver for an unsatisfiable instance is hard. This paper concerns with the objective
of certifying SAT solvers for unsatisfiable instances, and further for generating minimum proofs of
unsatisfiability. Besides focusing on generating a proof of unsatisfiability for a target unsatisfiable
formula, this paper addresses the problem of identifying a sub-formula that is also unsatisfiable
(i.e. an unsatisfiable core), and also of computing the smallest sub-formula in the number of clauses
that is also unsatisfiable (i.e. the minimum unsatisfiable core).

Besides the theoretical interest of computing unsatisfiable cores, or minimum unsatisfiable
cores, the recent utilization of SAT technology in Unbounded Model Checking [11] also relies
extensively on the ability of SAT solvers for generating proofs of unsatisfiability and for computing
unsatisfiable cores. As a result, the utilization of SAT solvers in Model Checking requires their
ability for efficiently generating proofs of unsatisfiability and also for computing small unsatisfiable
cores.

Moreover, the identification of inconsistent kernels in propositional knowledge bases is a prob-
lem where the identification of a subset with the minimum number of clauses may be crucial.
Observe that repairing inconsistent knowledge in real-world applications is a quite often problem
to be addressed [10], although to the extent of our knowledge the identification of the minimum in-
consistent kernel has never been addressed. Another application domain is interactive applications
requiring explanations. For this domain it is crucial identifying precisely why a set of constraints
is inconsistent and to correct it with the least number of modifications [8].

The paper is organized as follows. The next section surveys the work on computing unsatisfi-
able cores. This motivates the question of how to compute the minimum unsatisfiable core, and
section 3 proposes a first model for solving this problem. Besides the model, the paper also presents
preliminary experimental results.

2 Computing Unsatisfiable Cores

It is well-known that a CNF formula is unsatisfiable if it is possible to generate an empty clause
by resolution from the original clauses. The set of original clauses involved in the derivation of the
empty clause is referred to as the unsatisfiable core.
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Definition 1 (Unsatisfiable Core). Given a formula ϕ, UC is an unsatisfiable core for ϕ iff
UC is a formula ϕc s.t. ϕc is unsatisfiable and ϕc ⊆ ϕ.

Observe that an unsatisfiable core can be defined as any subset of the original formula that
is unsatisfiable. Consequently, there may exist many different unsatisfiable cores, with different
number of clauses, for the same problem instance, such that some of these cores are subsets of
others. Also, and in the worst case, the unsatisfiable core corresponds exactly to the set of original
clauses.

In the recent past, there have been different contributions to research on unsatisfiable cores.
Research work can be distinguished between theoretical and experimental work. In the theoretical
field, unsatisfiable cores complexity has been analyzed and formal algorithms have been proposed [3,
5, 6, 13]. Experimental work includes contributions of Bruni and Sassamo [2] and Zhang and Ma-
lik [14] 1. Both approaches extract unsatisfiable cores. The first proposes an adaptative search
guided by clauses hardness. The second approach is motivated by considering that a CNF formula
is unsatisfiable if it is possible to generate an empty clause by resolution from the original clauses.
This approaches basically extracts unsatisfiable cores based on the conflict analysis procedure [9].
The unsatisfiable core is given by the set of original clauses involved in the derivation of the empty
clause. Recent work by Oh et al. [12] proposes extracting a minimal unsatisfiable core.

The first step for computing an unsatisfiable core consists in identifying the clauses (either
original or recorded) that were involved in the steps that led to deriving the empty clause, and
thus proving unsatisfiability. However, and since the unsatisfiable core must only include original
clauses, it is necessary to develop a procedure for producing a trace from the recorded to the
original clauses. This procedure is based on an iterative marking scheme for the clauses. Initially,
only the clauses involved in deriving the empty clause are marked. At the end, the marked original
clauses correspond to the unsatisfiable core.

The existing experimental work described above has very little concern regarding extraction
of minimum size unsatisfiable cores, although in [14] the unsatisfiable core is reduced after being
extracted (and it can be reduced to the minimal core in the best case). Also, recent work in [12]
proposes a minimally unsatisfiable sub-formula extractor. However, in some practical applications
it may be useful identifying the minimum unsatisfiable core of a given problem instance, i.e. the
smallest number of clauses that make the instance unsatisfiable. We should note that in some
cases the size of a minimal unsatisfiable core may be much larger than the size of a minimum
unsatisfiable core.

3 Computing the Minimum Unsatisfiable Core

In this section we present the basic ideas of our model and algorithm to compute the minimum
unsatisfiable core.

Definition 2 (Minimum Unsatisfiable Core). Consider a formula ϕ and the set of all unsat-
isfiable cores for ϕ: {UC1, ..., UCj}. Then, UCk ∈ {UC1, ..., UCj} is a minimum unsatisfiable core
for ϕ iff ∀UCi ∈ {UC1, ..., UCj}, 0 < i ≤ j : |UCi| ≥ |UCk|.

From the above definition, one may conclude that all unsatisfiable formulas have at least one
minimum unsatisfiable core. Next, we illustrate our model and algorithm using the following ex-
ample:

Example 1. Consider the CNF formula ϕ having the variables X = {x1, x2, x3} and the clauses
Ω = {ω1, ..., ω6}:

ω1 = x1 ∨ ¬x3 ω3 = ¬x2 ∨ x3 ω5 = x2 ∨ x3

ω2 = x2 ω4 = ¬x2 ∨ ¬x3 ω6 = ¬x1 ∨ x2 ∨ ¬x3

From the formula ϕ above, we can identify nine different unsatisfiable cores UC1, ..., UC9:

1 A similar approach has been proposed in [7]. Basically, in [14] the information required is recorded during
the search, whereas in [7] it is computed after the search.
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UC1 = {ω1, ω2, ω3, ω4, ω5, ω6} UC4 = {ω1, ω3, ω4, ω5, ω6} UC7 = {ω2, ω3, ω4, ω5}
UC2 = {ω1, ω2, ω3, ω4, ω5} UC5 = {ω2, ω3, ω4, ω5, ω6} UC8 = {ω2, ω3, ω4, ω6}
UC3 = {ω1, ω2, ω3, ω4, ω6} UC6 = {ω1, ω2, ω3, ω4} UC9 = {ω2, ω3, ω4}

It is straightforward to conclude that UC9 = {ω2, ω3, ω4} is the minimum unsatisfiable core,
i.e. the unsatisfiable core with the smallest cardinality. Observe that the algorithms referred in
the previous section do not offer any guarantees of optimality regarding the size of the computed
unsatisfiable core. Hence, any of the enumerated cores UC1, ..., UC9 could be correctly returned
by any of the algorithms.

Definition 3 (Minimal Unsatisfiable Core). An unsatisfiable core UC for ϕ is a minimal
unsatisfiable core iff removing any clause ω ∈ UC from UC implies that UC − {ω} is not an
unsatisfiable core.

The work in [14] proposes an iterative solution for reducing the size of the computed unsatis-
fiable core, by iteratively invoking the SAT solver on each computed sub-formula. Also, the work
in [12] proposes extracting a minimal unsatisfiable core. However, these solutions albeit capable of
reducing the size of computed unsatisfiable cores, do not provide any guarantees regarding the size
of the unsatisfiable core with the least number of clauses. Suppose that the first iteration of the
algorithm returns UC1 = {ω1, ω3, ω4, ω5, ω6}. Thus, in one of the following iterations this result
can be improved to the minimal core UC4 = {ω1, ω3, ω4, ω5, ω6}, but never to the minimum core
UC9 = {ω2, ω3, ω4}.

3.1 The Proposed Model

We assume that each formula ϕ is defined over n variables, X = {x1, . . . , xn}, and that the formula
has m clauses, Ω = {ω1, . . . , ωm}. We start by defining a set S of m new variables, S = {s1, . . . , sm},
and create a new formula ϕ′ defined on n+m variables, X∪S, and with m clauses Ω′ = {ω′

1, ..., ω
′
m}.

Each clause ω′
i ∈ ϕ′ is defined from a corresponding clause ωi ∈ ϕ and from a variable si as follows:

ω′
i = {¬si} ∪ ωi

Example 2. Considering the CNF formula ϕ given in Example 1, the new formula ϕ′ is defined on
variables X ∪ S = {x1, x2, x3, s1, ..., s6} and clauses Ω′ = {ω′

1, ..., ω′
6}, such that:

ω′
1 = ¬s1 ∨ x1 ∨ ¬x3 ω′

3 = ¬s3 ∨ ¬x2 ∨ x3 ω′
5 = ¬s5 ∨ x2 ∨ x3

ω′
2 = ¬s2 ∨ x2 ω′

4 = ¬s4 ∨ ¬x2 ∨ ¬x3 ω′
6 = ¬s6 ∨ ¬x1 ∨ x2 ∨ ¬x3

Observe that variables S can be interpreted as clause selectors which allow considering or not
each clause ωi. Clearly, ϕ′ is readily satisfiable by setting all si variables to 0. Now, for each
assignment to the S variables, the resulting sub-formula may be satisfiable or unsatisfiable. For
each unsatisfiable sub-formula, the number of S variables assigned value 1 indicates how many
clauses are contained in the unsatisfiable core 2 (since the other clauses are satisfied by the S
variables assigned value 0). The minimum unsatisfiable core is obtained from the unsatisfiable
sub-formula with the least number of S variables assigned value 1.

One can adapt a state-of-the-art SAT solver to implement the proposed model. The problem
instance variables are organized into two disjoint sets: the S variables and the X variables. Deci-
sions are first made on the S variables (defining the S space) and afterwards on the X variables
(defining the X space); hence, each assignment to the S variables defines a potential core. If for
a given assignment all clauses become satisfied, then the search simply backtracks to the most
recently untoggled S variable. Otherwise, each time the search backtracks from a decision level
associated with an X variable to a decision level associated with a S variable, we have identified
an unsatisfiable core, defined by the S variables assigned value 1. After all assignments to the S
variables have been (implicitly) evaluated, the unsatisfiable core with the least number of utilized
clauses corresponds to the minimum unsatisfiable core.
2 Observe that this unsatisfiable core may be reduced if we restrict the core to clauses involved in the

derivation of the empty clause.
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3.2 Optimizations to the Model

The key challenge of the proposed model is the search space. For the original problem instance
the search space is 2n, where n is the number of variables, whereas for the transformed problem
instance the search space becomes 2n+m, where m is the number of clauses. Nevertheless, a few
key optimizations can be applied, namely by introducing a cardinality constraint and an additional
clause recording scheme.

First, the SAT-based algorithm can start with an upper bound on the size of the minimum
unsatisfiable core. For this purpose, the algorithm described in [14] can be used. Hence, when
searching for the minimum unsatisfiable core, we just need to consider assignments to the S
variables which yield smaller unsatisfiable cores. This additional constraint can be modeled as
a cardinality constraint. Moreover, each computed unsatisfiable core can be used for backtracking
non-chronologically on the S variables, thus further potentially reducing the search space. Observe
that an unsatisfiable core is computed whenever the search backtracks from the X space to the S
space, meaning that there is no solution to the formula given the current S assignments.

In addition, clause recording is used to reduce the search space. Interestingly, after a conflict
that implies recording a clause that allows backtracking from the X space to the S space, an
unsatisfiable core can be easily obtained from the new recorded clause. For example, given formula
ϕ′ from Example 2, recording clause ω′

7 = s2 ∨ s3 ∨ s4 means that core UC9 = {ω2, ω3, ω4} has
been identified.

Besides the traditional clause recording scheme [9], where each new clause corresponds to a
sequence of resolution steps, a new clause is recorded whenever a solution is found. The new clause
contains all the S literals responsible for not selecting the corresponding clause 3, except for those
clauses that would be satisfied by the X variables in the computed solution.

Example 3. Consider again formula ϕ′ from Example 2, and suppose that the current set of assign-
ments is {s1=0, s2=0, s3=1, s4=1, s5=0, s6=1, x1=1, x2=0, x3=0}. At this stage of the search,
all clauses are satisfied, and therefore a solution is found. Consequently, a new clause is recorded to
avoid finding again the same solution and also to force finding an unsatisfiable core in the future.
For this example, a new clause ω′

8 = s2 ∨ s5 is recorded. Observe that clause ω′
1 is satisfied by

assigning x1=1. The new clause means that for finding an unsatisfiable core either clause ω2 or
clause ω5 has to be part of the formula.

As a final remark, observe that by recording a clause whenever a solution is found allows the
search to prove unsatisfiability, thus terminating.

Example 4. Again for formula ϕ′, finding all possible solutions will add to the formula (at least)
the following clauses:

ω′
9 = s3 ω′

11 = s1 ∨ s2 ω′
13 = s2 ∨ s6

ω′
10 = s4 ω′

12 = s2 ∨ s5

It is straightforward to conclude that, by resolution between these clauses and the clauses from
the original problem specification, the empty clause is derived.

4 Experimental Results

In what follows experimental results are given and evaluated. We start by giving results for instances
where the main goal is finding the minimum unsatisfiable core. Afterwards, we give results for
instances where the minimum unsatisfiable core is not proved to be found (in the given CPU time)
and therefore we consider the smallest unsatisfiable core found so far.

For all the results, two main steps were followed:

1. First, an unsatisfiable core is obtained using zChaff most recent version 4. This version (zChaff
2003.12.04) can produce an unsatisfiable core from an unsatisfiable formula [14]. Moreover, the
unsatisfiable core is reduced iteratively: the solver runs until a fixed point on the size of the
unsatisfiable core is reached.

3 Such literals are assigned value 1 in a clause that is part of the original specification.
4 Available from http://ee.princeton.edu/∼chaff/zchaff.php.
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Table 1. Results on aim instances.

Instance #Vars #Cls zChaff Minimum Time Minimum (s)

aim-60-2 0-no-1 60 120 76 72 259

aim-60-2 0-no-2 60 120 79 78 510

aim-60-2 0-no-3 60 120 71 70 68

aim-60-2 0-no-4 60 120 64 (48) >3600

aim-75-2 0-no-1 75 120 96 86 1735

aim-75-2 0-no-2 75 120 72 72 1153

aim-75-2 0-no-3 75 120 62 61 2937

aim-75-2 0-no-4 75 120 89 (89) >3600

Table 2. Results on uuf50 instances.

Instance #Vars #Cls zChaff Smallest Value

uuf50-021 50 218 141 132

uuf50-032 50 218 117 107

uuf50-041 50 218 111 101

uuf50-0110 50 218 129 122

uuf50-0112 50 218 104 100

uuf50-0119 50 218 141 123

uuf50-0206 50 218 107 101

uuf50-0207 50 218 127 124

uuf50-0474 50 218 142 127

2. Afterwards, a tool for extracting the minimum unsatisfiable core is used. In this tool, the size
of the unsatisfiable core computed in 1. is used as a cardinality constraint when finding the
minimum unsatisfiable core 5.

The algorithm for identifying the minimum unsatisfiable core was implemented in the CQuest
SAT solver. CQuest is implemented in C++ and includes most of the most competitive techniques
for industrial benchmarks. For all experimental results a P-IV@1.7 GHz Linux machine with 1
GByte of physical memory was used. The limit CPU time was 3600 seconds.

Table 1 gives results for selected aim instances 6. For each instance, given values refer to the
number of variables and clauses, the size of the unsatisfiable core given by zChaff and the size of
the minimum unsatisfiable core given by our tool. In addition, the table shows the time spent on
finding the minimum unsatisfiable core. (The time spent on finding the minimal unsatisfiable core
is negligible.) For the instances where the search does not terminate in the allowed CPU time, the
size of the minimum core is between parenthesis. For these instances, this value represents the size
of the smallest unsatisfiable core found so far, which means that it is not guaranteed to correspond
to the size of the minimum unsatisfiable core. Results in Table 1 clearly indicate that the size of
the unsatisfiable core provided by zChaff may often be reduced.

Given the complexity of the algorithm for finding the minimum unsatisfiable core, interesting
results may be obtained even when the search does not terminate in the allowed CPU time. In such
cases, the smallest value found by the time the search finishes may already represent a significant
reduction to the size of the unsatisfiable core given by zChaff. Table 2 gives results for selected
uuf50 instances [4]. These results are representative of the results obtained for the whole benchmark
family. It is clear that the initial core may indeed be reduced, even though the best value found in
3600s is not proved to correspond to the size of the minimum unsatisfiable core.

Due to the complexity of the problem, the results obtained so far are limited to instances with
a small number of variables and clauses. Nevertheless, we believe that further optimizations can be
implemented in the future, both due to new advances in SAT technology and to new improvements
specific to this optimization problem. However, it has become clear from these preliminary results
that the size of an unsatisfiable core computed by zChaff can be somewhat far from the size of

5 This value is used as an upper-bound for the number of S variables to be assigned value 1. During the
search, the bound decreases whenever a new smaller unsatisfiable core is found.

6 We used the aim generator for obtaining these instances [1].
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the minimum unsatisfiable core. Consequently, it is indeed useful to use this tool with the goal of
reducing the minimal unsatisfiable core given by zChaff.

5 Conclusions

This paper overviews algorithms for computing unsatisfiable cores, and proposes a model for com-
puting the minimum unsatisfiable core. The proposed model represents a complex optimization
problem, and a SAT-based algorithm has been proposed. Experimental results analyze the actual
practical performance of the algorithm, and clearly indicate that the new approach can successfully
complement the existing tools for identifying unsatisfiable cores. Given the complexity of the new
algorithm, future research work entails improving and extending experimental evaluation of the
proposed model and algorithm.
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