
Local Search for Very Large SAT Problems

Steven Prestwich1 and Colin Quirke2

1 Cork Constraint Computation Centre
Department of Computer Science, University College, Cork, Ireland

s.prestwich@cs.ucc.ie
2 Boole Centre for Research in Informatics,

University College, Cork, Ireland
c.quirke@4c.ucc.ie

Abstract. The Walksat local search algorithm has previously been extended to handle
quantification over variables. This greatly reduces model sizes, but in order to guide greedy
moves the algorithm still maintains a set of violated clauses. For very large problems, or
at the start of a search, this can cause memory problems. We design a new local search
algorithm that does not maintain this set and is therefore applicable to larger SAT problems.
We show that this algorithm is nevertheless greedy in a probabilistic sense, and that it has
good performance on some SAT problems. We also describe a prototype lifted version of
the algorithm, and show that advanced constraint programming techniques pay off when
searching for violated clauses.

Introduction

To handle SAT problems with many clauses, an interesting and powerful technique is lifting [4, 12]:
compressing a large set of clauses into a single formula, then redesigning a search algorithm (back-
tracking or local search) to operate on these formulae. This is impractical for random problems
which (almost by definition) cannot be compressed, but for real problems very significant compres-
sion may be achieved. The problem of locating clauses with certain properties (for example the
property of violation), which must be solved by any search algorithm, is an NP-complete problem
[4]. This subsearch problem is therefore an interesting candidate for solution by constraint-based
methods, and we aim to apply more powerful methods than previously used.

Previous lifted SAT algorithms [4, 12] have been direct adaptations of existing search algorithms,
which is a natural approach. However, it can cause certain implementation difficulties. In particular,
local search algorithms for SAT typically maintain a set of currently violated clauses. This is used
to guide greedy local moves, which maximally reduce the number of violations. But for very large
problems the set of violated clauses may also be large. Though it often remains manageably small
it is not guaranteed to do so for all problems, especially in early phases of the search when it is
far from any solution. In fact it is reported in [4] that a lifted solver ran out of memory on a lifted
model corresponding to billions of clauses.

To avoid this problem we design a new local search algorithm specifically for lifting. We would
ideally like a local search algorithm for SAT that is reasonably efficient on real problems, yet does
not count the number of violated clauses. This would allow us to implement a lifted local search
algorithm without maintaining an actual set of violated clauses. However, it is not obvious how
to guide local search without this information. Even early local search algorithms such as GSAT
[18] were greedy. The more modern Walksat [17] and its variants all count violated clauses in some
way. SDF [16] and DLM [19] adjust clause weights and do not simply count violated clauses, but
still maintain the set of violations. Analogous techniques are used in combinatorial optimization:
simulated annealing [8] uses the change in solution quality to decide whether to accept a random
move or not, and genetic algorithms [5] are biased towards fitter organisms. To perform local search
without measuring the quality of the current or neighbouring states seems almost perverse, but
would have a practical advantage for lifting.

318 Steven Prestwich and Colin Quirke

A new local algorithm

Some non-greedy local search algorithms have already been explored. The importance of greediness
was been shown to be debatable in [3]. In their experiments a “timid” (not very greedy) hill-climbing
algorithm gave similar results to a more greedy algorithm. Schöning’s algorithm [15] randomly
selects a violated clause, then flips the value of a randomly chosen variable in that clause. This is
similar to an algorithm of Papadimitriou [11] for 2-SAT, except that after 3n flips it restarts from
a random total assignment, where n is the number of SAT variables. No attempt is made to count
violated clauses and the algorithm is shown to have an expected runtime within a polynomial factor
of O(2(1−k)n) for a k-SAT problem. This algorithm was designed with theoretical analysis in mind
and no empirical results seem to have been reported. However, it is equivalent (modulo restarts)
to Walksat with the noise parameter set to 1 and freebie moves suppressed (freebie moves create
no new violations). For many problems choosing an appropriate noise level is critically important
for finding a solution in a reasonable time, and freebie moves are known to improve performance,
so Schöning’s algorithm is unlikely to be a good general-purpose local search algorithm.

We decided to test the algorithm empirically on random 3-SAT problems, in which each clause
contains three literals, and each literal is negated with probability 0.5. The hard problems are
known to be in the crossover region where 50% of problems are satisfiable, which occurs when
the ratio of clauses c to variables v is approximately c/v = 4.258 + 58.26v−5/3. This formula was
carefully fitted to data up to 400 variables in [1]. We tested Schöning’s algorithm on these problems
using various restart thresholds, including ∞ and its recommended value of 3n. We applied it to
1000 problems of various sizes and took the 25th percentile of the execution time to find a solution.
Because exactly 50% of problems from the crossover region are satisfiable, the 25th percentile result
for all problems is the median result for the solvable problems. (This method is faster than filtering
out unsolvable problems via a SAT backtracker.) The results are shown in Figure 1, along with
results for Walksat using noise 0.5 (which is roughly optimal for these problems) and optimal
restart intervals (results taken from [13], no result for n = 75 available). Entries marked “—”
denote more than 3,000,000 flips. Schöning’s algorithm clearly scales poorly compared to Walksat,
despite its good theoretical properties. Surprisingly, its best results were obtained with infinite
restart intervals.

Schöning’s algorithm + various intervals
n WSAT 3n 10n 30n 100n ∞

25 94 656 471 418 422 432
50 414 26672 9866 11200 7688 8142
75 ? 847788 229154 268674 242604 145927

100 2123 — — — — —

Fig. 1. Flip results for Schöning’s algorithm with various restart intervals

Despite this unpromising start we tried various modifications in the hope of improving perfor-
mance. We restricted ourselves to heuristics based purely on locating a single violated clause. In
other words, we do not try to measure the quality of the search state, nor the relative quality of
the current state and the state after a candidate flip. Instead we look for new heuristics. A clue
lies in the fact that Schöning’s algorithm is similar to Walksat with maximum noise, thus making
no greedy moves. If we can find a way of making the search more greedy then this might move its
performance closer to that of Walksat. But how can we make it greedy if we do not count violated
clauses? First we define a weak form of greediness:

Definition. A variable selection heuristic is probabilistically greedy (PG) if non-greedy local moves
are more likely to be immediately reversed than greedy local moves.

A greedy move is defined here as one that decreases the number of violated clauses, while imme-
diately reversed means that the next local move flips the same variable back to its previous truth

Local Search for Very Large SAT Problems 319

assignment. Our aim is to find PG heuristics. Some local search algorithms, such as the Novelty
variant of Walksat [10], have a bias towards flipping the least-recently flipped variable. The TABU
variant also prevents the reversal of recent flips. We decided to try flipping the most recently flipped
variable, a heuristic we shall call MRF (most recently flipped). Note that the choice of violated
clause is random, so the most recently flipped variable in the selected clause is not necessarily the
most recently flipped variable of all. It turns out that a large class of heuristics including MRF is
PG:

Theorem 1. Any heuristic H that flips a variable in a randomly chosen violated clause is PG.

Proof. Suppose that at flip i H chooses variable v. Firstly, if flipping v increases the number of
violated clauses then all the newly-violated clauses must contain v, so the proportion of violated
clauses containing v increases. Therefore the probability of H selecting v at flip i+1 is higher than
it was at flip i. Secondly, if flipping v decreases the number of violated clauses then, by the same
argument, the probability of H selecting v at flip i + 1 is lower than it was at flip i. Thus a greedy
move is less likely to be reversed than a non-greedy one. ⊓⊔

The advantage of MRF is that it maximizes the probability that a non-greedy move will be
reversed. Suppose that such a move flips variable v, creating new violated clauses Sv. The next
move randomly selects a violated clause C. MRF reverses the move if and only if C ∈ Sv, whereas
any other variable selection heuristic (for example random selection) only reverses it some of the
time. In particular, flipping the least recently flipped variable will never immediately reverse a non-
greedy flip. MRF is likely to pay off most when the search is close to a solution, because typically
there will be few violated clauses, so after any non-greedy move most of the violated clauses are
in Sv and the move is very likely to be reversed.

Another property of some local search algorithms is probabilistic asymptotic completeness (PAC)
[6]. If a local search algorithm is PAC then its probability of solving a (satisfiable) problem tends to
1 as its runtime tends to ∞. This property is not guaranteed to yield a good local search algorithm,
but there is empirical evidence that it is an important ingredient [6]. Moreover, a PAC algorithm
never needs (in principle) to randomly restart, because it will eventually escape from any local
minimum. Avoiding the need for restarts reduces the number of runtime parameters that require
tuning. If an algorithm is not PAC then it is essentially incomplete and requires restarts to make
it PAC. It is still an open question whether Walksat is PAC though it is suspected to be, and has
been shown to be for 2-SAT [2]. Schöning’s algorithm uses restarts and is therefore PAC but our
algorithm is not. We therefore modify it by adding a noise parameter, giving the algorithm shown
in Figure 2, which we call PG-SAT.

assign all variables to random truth values
let S be the set of violated clauses
while S 6= {}

randomly choose a clause C ∈ S

with probability p

flip a randomly chosen variable in C

else with probability 1 − p

flip the most recently flipped variable in C

update S

Fig. 2. The PG-SAT local search algorithm

Theorem 2. PG-SAT with p > 0 is PAC.

Proof. Consider a search state A and a solution S. If A = S then we have found a solution.
Otherwise choose any violated clause C. At least one of the variables in C currently has the
opposite truth value to its value under S (if not then C is not violated because S is a solution). Let
v be one of these variables. If p > 0 then PG-SAT has a chance (a non-zero probability) of selecting

320 Steven Prestwich and Colin Quirke

v and flipping it, thus reducing the Hamming distance between A and S. Therefore PG-SAT has
a chance of moving directly to any solution from any search state. ⊓⊔

(Note that this proof does not assume any clause selection strategy, so PG-SAT is PAC even
under non-random clause selection; however, our PG proof assumes random clause selection.) We
tested PG-SAT with noise 0.2 on random 3-SAT problems, with results shown in Figure 3. Note
that random problems cannot benefit from lifting because lifting requires some form of regularity
in the clauses, but random 3-SAT is a standard benchmark for search algorithms. The results
show that PG-SAT does not use many more flips than Walksat (with roughly optimal runtime
parameters) for these problems. This supports the thesis of [3] that extreme greediness is not a
critical factor in local search, and that weaker forms are sufficient.

10

100

1000

10000

100000

1e+06

1e+07

0 50 100 150 200 250 300 350 400

fli
ps

variables

PG-SAT

WSAT

Fig. 3. Results on random 3-SAT

Next we compared PG-SAT with Walksat on some other SAT benchmarks (results omitted for
space reasons). PG-SAT seems to be relatively worse on some problems than on random 3-SAT,
and on some problems such as planning it was much worse. This may be because greedy moves are
more important for handling variable dependencies arising in structured problems, and that PG-
SAT’s weaker form of greed is less effective than truly greedy search. But this is still a prototype
algorithm and we hope to find improved heuristics for structured problems in future work. We
have experimented with several variants, including an adaptive noise strategy that boosted noise
if too many flips are reversed immediately, but this did not noticeably improve the results, nor did
random restarts.

Lifting the algorithm

An advantage of PG-SAT over Walksat (and most other local search algorithms) is that it requires
fewer subsearch problems. In fact it has just one: to randomly select a violated clause, and if there
are none then report this fact. This simplicity makes a lifted version easier to implement. We
implemented a prototype lifted PG-SAT (LPG-SAT) in C++ using the EFC constraint library
[7], which provides powerful constraint programming techniques such as forward checking (FC),
generalized arc-consistency (GAC) [9], conflict-directed backjumping (CBJ) [14] and dynamic vari-
able ordering. The lifted algorithms in [12] did not use constraint propagation; one in [4] did but
used static variable ordering. Our algorithm therefore uses more constraint-based techniques than
previous lifted algorithms.

We represent SAT models using formulae very similar to the extended axioms of [4]. We can
define variables with finite integer domains and specify (binary or non-binary) constraints on them.
Each variable may have any number of integer arguments so that families of variables can be
defined, and constraints can be expressed on the arguments. As an example consider the problem
of finding Ramsey numbers. The Ramsey number Rk,l is the smallest number such that every
graph with at least that number of vertices either contains a clique of size k or an independent

Local Search for Very Large SAT Problems 321

set of size l. Ramsey proved that such such a number exists for every (k, l) pair, but computing
them is very difficult. If a graph of n vertices can be constructed, by whatever means, with no
k-cliques or l-independent sets, then this proves that Rk,l > n. The problem has a simple SAT
encoding. Consider R4,4 which is known to be 18. The problem of showing that R4,4 > 17 can be
SAT-encoded as follows. Define Boolean variables vi,j where 1 ≤ i < j ≤ 17 and vi,j=T if and only
if vertices i and j are adjacent. There are two clause schemata:

1 ≤ a < b < c < d ≤ 17 → va,b ∨ va,c ∨ va,d ∨ vb,c ∨ vb,d ∨ vc,d

1 ≤ a < b < c < d ≤ 17 → va,b ∨ va,c ∨ va,d ∨ vb,c ∨ vb,d ∨ vc,d

where a, b, c, d are universally quantified. This model requires 136 variables and 4760 clauses, a
small problem that can be solved in seconds by Walksat. However, the problems rapidly become
far larger. The exact value of R5,5 is unknown but lies between 43 and 49; the R5,5 > 43 problem
requires about two million clauses, while others have much larger models.

On SAT problems other than Ramsey numbers we may need more than two schemata. If
subsearch finds no solution (a violated clause) using a given clause schema then it does not contain
a violated clause, so it tries the next schema, until either a violated clause is found or no schemata
remain (in the latter case the SAT problem is solved). A complication is that clause schemata
may encode different numbers of clauses. We therefore weight schemata according to the number
of clauses that they encode, and when searching for a violated clause the schemata are selected
in an order that is random but biased to select large schemata first. Without this bias, clauses
occurring in smaller schemata are more likely to be selected. The bias helps to correct this, but
because the clause selection is still basically random the algorithm is still PG. In future work
we will investigate other biases, for example it might make sense to search for low-arity violated
clauses first. To randomly select a violated clause we use random value orderings, and smallest-
domain variable ordering with random tie-breaking. Both techniques are supported by EFC, as
are constraints such as < which can be used during subsearch. Note that we do not guarantee a
uniform distribution of violated clauses, but that any violated clause may in principle be selected,
which is sufficient to guarantee PAC.

One motivation for lifting is that there may exist models that would give better results with
some search algorithm, but are never used because they have large space complexities. If space is
not an issue then we are free to use such models. An example is the Golomb ruler problem: find
an ordered sequence of integers (marks) 0 = x1 < x2 < . . . < xm = ℓ such that the m(m − 1)/2
differences xj − xi (j > i) are distinct, where ℓ is the permitted ruler length. Several models are
given in [20], including a binary/ternary model with space complexity O(m3) and a quaternary
model with O(m4). One would normally choose the former because of its smaller models, but the
latter is simpler and may give better results with some search algorithms. In fact it turns out that
with a constraint solver (Ilog Solver) the quaternary model gives inferior results, but in future work
we will test it against the binary/ternary model with local search.

To evaluate the benefits of constraint programming techniques in lifted local search we compare
the flip rates of Walksat against LPG-SAT with FC, GAC, FC with CBJ, and GAC with CBJ,
on the quaternary Golomb ruler model. The results in Figure 4 show that all versions of LPG-
SAT perform similarly for small problems, but that GAC has superior scaling as the problem size
grows. More powerful constraint propagation leads to faster subsearch and therefore faster location
of violated clauses. CBJ improved FC but not GAC. Walksat has a higher flip rate than both on
smaller problems but does not scale as well as LPG-SAT[GAC]. We conclude that lifting with an
appropriate constraint solver pays off on sufficiently large problems (crossover between Walksat
and LPG-SAT[GAC] occurs at approximately 600,000 clauses). In future work we aim to improve
both the implementation and the search heuristics.

Acknowledgement

This work was supported by the Boole Centre for Research in Informatics, University College,
Cork, Ireland. Many thanks to George Katsirelos, Department of Computer Science, University of
Toronto, for implementing new EFC features at our request.

322 Steven Prestwich and Colin Quirke

 1

 10

 100

 1000

 10000

 100000

 4 5 6 7 8

fli
ps

 p
er

 s
ec

on
d

marks

Walksat
GAC

FC
GACCBJ

FCCBJ

Fig. 4. Flip rate scaling on Golomb rulers

References

1. J. M. Crawford, L. D. Auton. Experimental Results on the Crossover Point in Random 3SAT. Artificial

Intelligence vol. 81, nos. 1–2, 1996, pp. 31–57.
2. J. Culberson, I. P. Gent, H. H. Hoos. On the Probabilistic Approximate Completeness of WalkSAT for

2-SAT. Technical Report APES-15A-2000, Department of Computer Science, University of Strathclyde,
2000.

3. I. P. Gent, T. Walsh. Towards an Understanding of Hill-Climbing Procedures for SAT. Eleventh National

Conference on Artificial Intelligence, AAAI Press/MIT Press, 1993, pp. 28–33.
4. Satisfiability Algorithms and Finite Quantification. M. L. Ginsberg, A. J. Parkes. Seventh International

Conference Principles of Knowledge Representation and Reasoning , Morgan Kaufmann, 2000, pp. 690–
701.

5. J. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, 1975.
6. H. H. Hoos. On the Run-time Behaviour of Stochastic Local Search Algorithms for SAT. Sixteenth

National Conference on Artificial Intelligence, AAAI Press, 1999, pp. 661–666.
7. G. Katsirelos. EFC, available at http://www.cs.toronto.edu/˜gkatsi/efc/efc.html.
8. S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi. Optimization by Simulated Annealing. Science vol. 220,

1983, pp. 671–680.
9. A. K. Mackworth. On Reading Sketch Maps. Fifth International Joint Conference on Artificial Intelli-

gence, Kaufmann, 1977, pp. 598–606.
10. D. McAllester, B. Selman, H. Kautz. Evidence for Invariants in Local Search. Fourteenth National

Conference on Artificial Intelligence, AAAI Press, 1997, pp.
11. C. H. Papadimitriou. On Selecting a Satisfying Truth Assignment. Thirty-Second Annual IEEE Sym-

posium on Foundations of Computing, 1991, pp. 163–169.
12. A. J. Parkes. Lifted Search Engines for Satisfiability. PhD dissertation, University of Oregon, 1999.
13. A. J. Parkes, J. P. Walser. Tuning Local Search for Satisfiability Testing. Thirteenth National Confer-

ence on Artificial Intelligence, AAAI Press, 1996, pp. 356–362.
14. P. Prosser. Hybrid Algorithms for the Constraint Satisfaction Problem. Computational Intelligence

vol. 9 no. 3, 1993, pp. 268–299.
15. U. Schöning. A Probabilistic Algorithm for k-SAT and Constraint Satisfaction Problems. Fortieth

Annual Symposium on Foundations of Computer Science, IEEE Computer Society, 1999, pp. 410–414.
16. D. Schuurmans, F. Southey. Local Search Characteristics of Incomplete SAT Procedures. Seventeenth

National Conference on Artificial Intelligence, AAAI Press, 2000, pp. 297–302.
17. B. Selman, H. Kautz, B. Cohen. Noise Strategies for Improving Local Search. Proceedings of the Twelfth

National Conference on Artificial Intelligence, AAAI Press, 1994, pp. 337–343.
18. B. Selman, H. Levesque, D. Mitchell. A New Method for Solving Hard Satisfiability Problems. Pro-

ceedings of the Tenth National Conference on Artificial Intelligence, MIT Press 1992, pp. 440–446.
19. Y. Shang, B. W. Wah. A Discrete Lagrangian-Based Global-Search Method for Solving Satisfiability

Problems. Journal of Global Optimization vol. 10, Kluwer 1997, pp. 1–40.
20. B. Smith, K. Stergiou, T. Walsh. Modeling the Golomb Ruler Problem. Research Report 1999.12, Uni-

versity of Leeds, England, June 1999 (presented at the IJCAI’99 Workshop on Non-binary Constraints).

