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Abstract. Despite the widespread use and study of Boolean satisfiability for a diverse
range of problem domains, encoding of problems is usually given to general propositional
logic with little or no discussion of the conversion to clause form that will be necessary.
In this paper we present a fast and easy to implement conversion to equisatisfiable clause
form for Boolean circuits. Since the conversion is equivalent to that of Boy de la Tour it is
optimal in the number of clauses produced. We present experimental results comparing this
and other conversion procedures on BMC problems and conclude that the CNF conversion
plays a large part in reducing the overall solving time.

1 Introduction

SAT solvers based on the DPLL procedure typically require their input to be in conjunctive normal
form (CNF). Earlier papers dealing with encoding to SAT, particularly much of the planning
literature, encode directly from the input representation to clause form. More recent encoding
work makes little mention of CNF conversion. For example, Biere et al., proposing BMC [3],
give an encoding to propositional logic only. Similarly, although the SNF encoding for BMC [6]
discusses the clauses generated, the majority of the presentation is in general propositional logic.
The microprocessor verification work of Velev includes a thorough analysis of improving the clause
form generated [13], but the work is not immediately applicable to general propositional logic.
Nevertheless, Velev is able to claim a speed up by a factor of 32 by altering the clause form
conversion.

There is other evidence to motivate the study of clause form conversions for SAT. A reformula-
tion [2] of a standard SAT benchmark problem using a more appropriate clause form representation
is shown to reduce the solving time is modern solvers. Reformulating CNF problems automatically
can have effective results but the procedures are frequently slow. By generating the improved clause
form directly from the original problem, this may be avoided.

In the first-order logic domain, the CNF conversion problem was handled comprehensively by
Boy de la Tour [4]. The algorithm given is impractical without the improvements by Nonnengart
et al. [10], but the resulting algorithm is very fiddly to implement making it hard to be confident
of a correct implementation.

In this paper we introduce a simple and easy to understand CNF conversion algorithm for
propositional logic and prove that it is optimal with respect to the number of clauses. As its time
complexity is linear, it represents a significant improvement over the (quadratic) Boy de la Tour
algorithm. Of course, it is well known that problem size does not necessarily correspond to solving
time in SAT, so we present some experimental results demonstrating the effect that our algorithm
has on some BMC [3] problems.

1.1 Notation conventions

In an attempt to improve the clarity of the presentation, we use a number of conventions in
our notation. Much of the work is concerned with both graphs and propositional logic, so we
distinguish between graph variables representing vertices and edges given in italic capitals (X,Y )
and propositional variables given in italic lower case (x,y); vertices are typically denoted V and
edges E and this notation is significant in determining the type of a function. We will use the
shorthand of referring to a subgraph by a single edge; the subgraph thus identified includes all of
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(a) a ∧ b ↔ (a → b) (b) a ∨ (b ↔ ¬c)
reduced to ¬(a ∧ b ↔ (a ∧ ¬b)) reduced to ¬(¬a ∧ (b ↔ c))

Fig. 1. Example RBCs showing vertex labelling

the descendents of the edge given, and such an edge is called the root of the subgraph and denoted
T . Sets of vertices or edges are given in bold type (X, Y).

Where a function creates new propositional variables, these are given the name xi where i is
some identifier (typically a graph vertex). These variables are assumed to be unused in any other
context.

2 Boolean Circuits

We present the algorithms in this paper using Boolean circuits, DAG representations of proposi-
tional logic which enable subformula sharing, even with different polarities, as a natural feature.
A refinement called reduced Boolean circuits (RBCs) [1] restricts the structure of the graph to
increase the amount of sharing. Using E for the set of edges, VI for the set of internal (gate)
vertices and VL for the set of leaf (variable) vertices, we can give the properties of RBCs as

An RBC is a DAG consisting of edges E and vertices V = VI ∪VL where internal vertices VI

representing operators, and leaf vertices VL representing variables. The following properties are
required to hold and form the encoding of Boolean circuits as DAGs:

– Each V ∈ VI consists of an operator op(V ) ∈ {∧,↔} and child edges lt(V ), rt(V ) ∈ E
– Each V ∈ VL contains a variable var(V )
– Each E ∈ E has a sign sign(E) ∈ {+,−} and a target vertex target(E) ∈ V

Negation is encoded into the edges by the sign attribute: sign(E) = + indicates an unnegated
edge and sign(E) = − indicates a negated edge. Clearly, for full expressivity a formula in an RBC
begins with an edge. To simplify the definitions in this paper we extend the set of properties on
RBC vertices and edges with the inverse functions of target , and lt and rt :

in(V ) = {E|E ∈ E, target(E) = V } source(E) =

{
V if E = lt(V ) ∨ E = rt(V )
undefined otherwise

RBCs have a number of other restrictions to reduce the number of representations of equivalent
formulæ. Of interest here are: for all vertices, lt(v) 6= rt(v); if op(v) =↔ then lt(v) and rt(v) are
unsigned. The example graph in Figure 1a demonstrates the labelling of subgraphs that we will
use, and the use of dashing for negated edges.

The eventual role of a conjunction vertex (as a conjunction or a disjunction) is determined
by the number of negated edges appearing on a path connecting it to the root of the graph. In
a manner similar to polarity for propositional logic we define in Figure 2 the number of positive
references at a vertex V as the number of incoming edges from a positive polarity ancestor, and the
number of negative references as the number of incoming edges from a negative polarity ancestor.
These functions are defined with respect to the root edge of a formula so that only relevant edges
are considered.

That is, r+
T (V ) is increased by one for every positive incoming reference, but both positive and

negative occurrences of equivalence reference their child vertices independently and hence increase
the number of positive references separately; similarly for r−T . The conventional notion of polarity
in propositional formulæ does not completely capture the semantics of r+

T and r−T even on RBCs
structured as trees; nevertheless, we will use the following terms as a shorthand:
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r+
T (V ) =

∑
E∈in(V )



1 if E = T, sign(E) = +

min(r+
T (source(E)), 1) if op(source(E)) = ∧, sign(E) = +

min(r−T (source(E)), 1) if op(source(E)) = ∧, sign(E) = −
min(r+

T (source(E)), 1) + min(r−T (source(E)), 1) if op(source(E)) =↔
0 otherwise

Fig. 2. The positive references of vertex V with respect to root edge T ; r−T is defined similarly

– V has positive polarity if r+
T (V ) ≥ 1, r−T (V ) = 0

– V has negative polarity if r+
T (V ) = 0, r−T (V ) ≥ 1

– V has zero polarity if r+
T (V ) ≥ 1, r−T (V ) ≥ 1

We use a system of annotations to the RBCs to indicate the polarity of a vertex, allowing us to
draw diagrams of RBC fragments with properties that depend on the context of the fragment.
Figure 1b shows the RBC corresponding to the formula a ∨ (b ↔ ¬c).

3 CNF Conversions

CNF conversions are usually defined on propositional formulæ without sharing. We therefore de-
scribe the CNF conversions over RBC trees rather than general graphs. We address the issue of
sharing in Section 4.1. We cover the CNF conversions briefly here, but more detail is available
in [12].

The standard CNF conversion is that obtained by the distributive properties of ∧ and ∨; this
results in an exponential increase in the size of the formula. It is easily applied to RBCs as a
recursive descent of the tree, and we will write CNF(T ) for the conversion function.

Renaming is the introduction of new variables to represent the truth value of subformulæ. For
example, a formula (a∨b)∧(c∨d) may be converted more succinctly by the introduction of a variable
xc∨d thus: ((a ∨ b) ∨ xc∨d) ∧ (xc∨d ↔ (c ∨ d)). Given a positive or negative polarity subformula,
the equivalence defining xc∨d may be reduced to an implication with direction depending on the
polarity. We write the polarity-sensitive renaming of an RBC tree as ren(V,R) where R ⊆ VI is
the set of vertices to rename. While this is sufficient to describe some CNF conversions, to define
our conversion we require more direct control. We write CNFR(V,R+,R−) where R+ and R− are
the sets of vertices for positive and negative polarity renaming respectively1.

The definitional conversion Def(T ) = CNFR(T,VI,VI) renames every internal vertex both
positively and negatively to avoid computing polarity (used in NuSMV [5], and in BCZChaff [7]);
the structure-preserving [11] conversion, SP(T ) = CNF(ren(T,VI)) takes into account the polarity
of the subformulæ.

The Boy de la Tour conversion [4] is a method of chosing R by computing the reduction in
the total number of clauses brought by each renaming. Briefly, the conversion is based on the
computation of the reduction in the overall clause size for renaming each vertex, performed top
down. This is reduced to a function of the direct ancestors and descendents of the vertex. The
conversion is shown to be optimal for formulæ without equivalences. See [12] for a discription of
the conversion applied to RBC trees. The main drawback of the approach is that the computation
of the number of clauses at each vertex is based on exponentially growing functions: for even trivial
BMC formulæ, the numbers overflow a 32-bit register. A later presentation of the algorithm by
Nonnengart et al. [10] reduces the inequality to a number of case splits which can be solved by
syntactic examinations of the surrounding graph. Unfortunately, these can become quite elaborate:
the conditions for zero polarity formulæ require the evaluation of eight syntactic conditions in
various combinations. We argue that it is prohibitively difficult to ensure a correct implementation
of this method.
1 It is not possible to write a convenient renaming function which takes positive and negative sets of

vertices and returns an RBC as it could involve rewriting ↔ subgraphs; fortunately this does not affect
our analysis.
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Table 1. The renaming-compensated clause counting functions p+
r (T,R) and p−r (T,R)

p+
r (V,R+,R−) p−r (V,R+,R−)

V ∈ VL 1 1
V ∈ R+ 1 —
V ∈ R− — 1

op(V ) = ∧ p+
r (lt(V ),R+,R−) + p+

r (rt(V ),R+,R−) p−r (lt(V ),R+,R−)p−r (rt(V ),R+,R−)
op(V ) =↔ p+

r (lt(V ),R+,R−)p−r (rt(V ),R+,R−)+ p+
r (lt(V ),R+,R−)p+

r (rt(V ),R+,R−)+
p−r (lt(V ),R+,R−)p+

r (rt(V ),R+,R−) p−r (lt(V ),R+,R−)p−r (rt(V ),R+,R−)

Comp+(T, E) = Comp+(T, target(V ))

Comp−(T, E) = Comp−(T, target(V ))

Comp+(T, V ) =


∅ if V ∈ VL, or

Comp+(T, lt(V )) ∪Comp+(T, rt(V )) if r+
T (V ) = 0, or

Comp+(T, lt(V )) ∪Comp+(T, rt(V )) if op(V ) = ∧, or

dis+−(V ) ∪ dis−+(V ) ∪Comp+(T, lt(V )) ∪Comp+(T, rt(V )) if op(V ) =↔

Comp−(T, V ) =


∅ if V ∈ VL, or

Comp−(T, lt(V )) ∪Comp−(T, rt(V )) if r−T (V ) = 0, or

dis−−(V ) ∪Comp−(T, lt(V )) ∪Comp−(T, rt(V )) if op(V ) = ∧, or

dis++(V ) ∪ dis−−(V ) ∪Comp−(T, lt(V )) ∪Comp−(T, rt(V )) if op(V ) =↔

disxy(V ) =


∅ if nlnr < nl + nr, or

{lt(V )} if nl > nr

{rt(V )} if nl ≤ nr

 where

{
nl = px

r (lt(V ),Comp+(T, lt(V )),Comp−(T, lt(V )))

nr = py
r(rt(V ),Comp+(T, rt(V )),Comp−(T, rt(V )))

}

Fig. 3. Renaming sets construction for the compact conversion

4 The Compact Conversion

We present a new clause form conversion, the compact conversion which computes the sets of
renaming locally and bottom-up. Intuitively, we precompute r+

T and r−T for each vertex, then be-
ginning with the leaves we work upwards through the graph computing the clauses which represent
each vertex. A separate set of definitional clauses is maintained to define the variables used for
renaming. At each vertex we consider the number of clauses it will generate based on whether a
child is renamed: a disjunction x∨y is converted by either renaming an argument x and producing
the clauses {¬x} × CNF(y) or by simply computing CNF(x) × CNF(y), whichever results in the
fewest clauses. Equivalences are handled as conjunctions of disjunctions so the same test can be
used. Note that the decision to rename a vertex is made when considering the clauses generated
by its parent vertex. The clauses for the positive and/or negative cases as required are then easily
generated.

More precisely, we define the functions Comp+(T, V ) and Comp−(T, V ) in Figure 3 to give
the set of positive and negative renamings respectively on the graph beginning at V . The auxiliary
function disxy(V ) chooses the best child of V , if any, to rename given their signs, x and y. The
renaming condition is computed on the tree after all vertices below the considered one have been
renamed. To accommodate this we define a pair of functions (Table 1) which count the number of
clauses produced by the graph beginning at vertex V after the renaming R has been applied (the
renaming analogue of the clause counting functions in [4]). In the implementation these values are
the sizes of the clause sets representing V , so the conversion takes just O(V) time.

Since we are targeting a SAT solver with this conversion, with its (assumed) exponential com-
plexity in the number of variables, we choose to rename only if it reduces the number of clauses
produced. In the case that the number of clauses is the same, the renaming is not performed. This
is in contrast to the Boy de la Tour conversion, where the optimality analysis [4] is simplified by
the zero-benefit renaming.
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The optimality of the compact conversion is shown by comparing the renaming sets with that
of the Boy de la Tour conversion. In [12] we show that for RBC trees, only the most immediate
ancestor contributes to the renaming decision, and therefore the construction for the compact
conversion is equivalent. Furthermore, by converting equivalences into graphs of conjunctions we
show that the compact conversion is also optimal in this case.

4.1 RBCs with Sharing

Until now we have considered only RBCs structures as trees. As their main strength is in the
sharing, we consider the changes required to make the compact conversion optimal for general
RBCs. The basic approach for such a conversion is the repetition of multiply-referenced subgraphs
with the alternative of renaming the subgraph in the same way as discussed above.

By a case analysis, we find that vertices with multiple inegdes of the same polarity should be
renamed if they generate more than one clause in that polarity; an exception is made if there are
exactly two inedges with each referencing the vertex once. In this case renaming is not performed
for size two. This special case is problematic as it extends the amount of information required about
the graph beyond that available to the compact conversion. In fact, if we relax our requirement
that renaming always reduces the number of clauses, this special case can be eliminated: renaming
does not, in this case, increase the number of clauses generated. The resulting condition is rs

T (V ) ≥
2, ps(V ) ≥ 2 s ∈ {+,−}.

Combining the multiple-reference renaming with the compact conversion requires some care to
ensure that optimality is maintained. We must consider those vertices which are renamed during
conversion to a tree that, had they not been renamed, would have resulted in the production
of fewer clauses. This occurs only when ps

r(V,Comp+(T, V ),Comp−(T, V )) = 1 but ps(V ) ≥ 2.
The reverse situation (a renaming that should have been performed during tree construction was
omitted) does not occur since ps

r(V,Comp+(T, V ),Comp−(T, V )) ≤ ps(V ). The optimal number
of clauses is thus generated if the condition ps

r(V,Comp+(T, V ),Comp−(T, V )) ≥ 2 is used in place
of ps(V ) ≥ 2. For this to be possible, the conversion to a tree must be performed bottom-up —
the graph below V must already be a tree in order to compute the conversion condition required
for converting V itself. An efficient implementation, running the two algorithms simultaneously,
remains in O(|V|).

5 Evaluation and Conclusions

We have implemented the compact conversion in NuSMV [5] and compare it to the definitional
conversion used by default. In addition, we can compare against an variation of the structure
preserving conversion: we replace the condition disxy(V ) with one that always returns the larger
child2.

Table 2 lists the results and the timings with zChaff [9]. The problems are the standard DME
benchmark and an industrial problem from the Texas-97 benchmark suite (MSI) (see [6]), and
two deadlock problems from [8] (Elevator and Mmgt). Where the SNF [6] encoding is used, this is
indicated and we can see how the compact conversion helps to narrow the gap between this and
the standard BMC encoding. Unsurprisingly, the compact conversion consistently generates fewer
clauses and the solving times are also better in most cases, sometimes dramatically so. For the
deadlock problems, however, the larger conversions perform significantly better. These problems
are solvable, and it is likely to be a coincidence of variable ordering heuristics. Nevertheless it
points a direction for further research into CNF conversions.

We conclude that the compact clause form conversion, which we have shown to be optimal in
the number of clauses and a complexity class (linear versus quadratic) faster than the previously
best known algorithm, also improves the solving time for several large benchmark problems.

2 This is builds on SP in a number of ways: our implementation refuses to rename single clauses as it is
never optimal; it also benefits from the optimal treatment of sharing.
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Table 2. Benchmark results for three clause form conversions

Name k SAT Definitional SP Compact
Clauses Time (s) Clauses Time (s) Clauses Time (s)

DME (Priority 1, SNF) 13 Y 18 961 0.05 7 257 0.01 6 005 0.01
DME (Priority 1) 13 Y 22 043 0.05 8 189 0.01 6 630 0.01
DME (Priority) 52 Y 234 515 4.03 79 507 5.56 52 313 0.77

DME (Priority, SNF) 52 Y 75 121 2.63 28 785 1.32 23 789 0.47
DME (Access) 40 N 70 808 16.34 25 149 5.11 21 268 1.72

DME (Access, SNF) 40 N 58 884 14.14 22 484 2.63 18 640 1.13
MSI (Request A) 20 N 1 423 852 53.97 487 910 13.43 438 045 11.25

MSI (Request A, SNF) 20 N 1 422 861 80.28 487 915 20.49 438 066 13.64
MSI (Request B) 20 Y 1 423 187 174.2 488 011 40.23 438 169 49.80

MSI (Request B, SNF) 20 Y 1 424 359 174.7 488 288 29.37 438 423 23.11
Elevator 3 14 Y 230 104 1424.8 84 441 129.8 83 035 262.9
Mmgt 3 10 Y 44 556 28.2 16 770 794.4 16 116 376.9
Mmgt 4 12 Y 70 735 878.3 26 655 483.1 25 652 734.1
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