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Abstract. Modern algorithms for the SAT problem reveal an almost tractable behavior on “real-world”
instances. This is frequently contributed to the fact that these instances possess an internal “structure”
that hard problem instances do not exhibit. However, little is known about this internal structure. We
therefore propose a visualization of the instance’s variable interaction graph (and of its dynamic change
during a run of a SAT-solver) as a first step of an empirical research program to analyze the problem
structure. We present first results of such an analysis on instances of bounded model checking bench-
mark problems.

1 Introduction

Progress in SAT-checking over the last years has been tremendous. Problems that were completely out of
reach ten years ago, can now be handled with success. Especially in hardware verification, SAT solvers
(and the associated method of bounded model checking [1]) wrote a glittering success story, and mainly re-
placed the until then predominant BDD-based model checkers [2]. But also in other combinatorial problem
domains, like planning [3], configuration [4], or software verification [5] SAT checkers were able to play
out their strengths.

Although the advent of new methods and optimized implementations made SAT-solvers very success-
ful on these “real-world” instances, large classes of SAT instances have remained (e.g., random 3-SAT
problems with a clause-variable-ratio near the phase transition point) on which these solvers miserably
fail—even on instances that are considerably smaller (by four to five orders of magnitude). Taken on its
own, this fact is not very surprising, as SAT is an NP-complete problem. However, the reasons for this
phenomenon are not very deeply understood, and—besides of rare and artificial cases—there is no a priori
criterion available to decide whether a problem instance will behave benign or malicious.

The standard argument found in the literature to explain this dichotomy is that real-world instances
are equipped with some kind of internal (and sometimes hidden) “structure” that makes these problems
tractable. The term “structure”, due to its vagueness, leaves much room for interpretation, though, and it
remains unclear how this structure manifests itself and how it could be exploited. Among the methods that
were proposed are randomization and clause learning, techniques that can be found in most implementations
of modern SAT-solvers for real-world instances today [6, 7]. Concepts explaining the boundary between
tractability and intractability include backbone variables [8] and backdoor sets [9]. Although highly valuable
from both an epistemological and a practical point of view, these concepts do not deliver an a priori criterion
to directly “read off” the computational hardness of a given instance.

We therefore propose a novel, partly empirical approach in order to shed some light on an instance’s
internal structure. A major ingredient of our method is the visualization of internal variable dependencies
as they emerge from the problenirgeraction graph10-12]. In this graph, propositional variables appear
as nodes, and an edge is drawn between two nodes, if the edge’s adjacent nodes’ variables appear together
in at least one clause of the problem instance. We propose to use these diagrams as auxiliary devices to
support the hypothesis building process.

In the next sections we show first steps into this direction. Experiments were mainly conducted with
examples from bounded model checking.

2 Experiments

We started our examination with an instance from bounded model checking that stems from equivalence
checking of a 16-bit sequential shift-and-add multiplier with a combinatorial multiplier (see [13] for fur-
ther information). We used the filongmult8 , representing equivalence of bit 8 of the two circuit
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designs: All diagrams were produced with the freely available graph editor and layout program yEd
(http://lwww.yworks.com).
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Fig. 1. Search tree of depth-bounded run of the DP algorithm ototigmult8  benchmark problem.

It turned out that visualizing only the structure of the whole problem is not sufficient for explaination
of structural phenomena. Therefore we simulated depth-bounded runs of a typical Davis-Putnam algorithm
on these examples. The search tree of such a depth-bounded runlongimeilt8  instance is shown in
Fig. 1. The tree shows the search tree up to depth 3, with the initial instance as root node of the tree. Each
node is labeled with two numbers (k), wheren indicates the number of different propositional variables
of the instance ani the number of clauses. Child nodes are generated by case distinction (on the indicated
variable) and subsequent unit propagation. On search depth 3, we have four non-trivial clauseBets (
C, D) with between 2103 and 3161 variables. To illuminate the dynamics of the interaction graphs, we
have added a further node at an increased search depth of 5, Bafnddteraction graphs for these five
shapshots are shown in Figs. 2 and 3. iaghsth in the middle of Fig.3 additionally shows a magnified
view of the top left part of Diagram.

In these diagrams we used a refinement of ordinary interaction graphs, in which 2-clauses (aka 2-literal-
clauses) are treated specially. Each 2-clause is represented as a directed or undirected arc in the graph,
where we make the following distinction:

1. A clause with two positive literals is shown as a red, double-ended arrow.

2. Aclause with one positive and one negative literal,(sayVvy), is written as a blue arrow from variable
x to variabley.

3. A clause with two negative literals is written as a green, double-ended arrow.

All other clauses are displayed with black edges between the involved varfdibes.omparison reasons,

we initiated experiments with other SAT instances. We used an instance from automotive product configu-
ratior?, one instance of the well-known pigeon hole problehwé10 ) and a random 3-SAT formula with

100 variables and 425 clauses (generated with SATO3.0). The last two instances are known to be hard for
resolution-based SAT solvers, whereas the configuration instance is known to be very easy. The interaction
graphs shown on the left of Fig. 4 correspond to a state during the run of a DP algorithm, where a few
literals already have been fixed. After setting of three further variables and subsequent unit propagation the
interaction graphs shown on the right resulted.

3 Observations and Hypotheses

During our experiments we made the following observations:

! http://www.cs.cmu.edu/"modelcheck/omc/bmc-benchmarks.html
2 Color versions of the diagrams of this article can be found at http://www-sr.informatik.uni-tuebingen.de/ sinz.
3 File C202_FW downloadable at http://www-sr.informatik.uni-tuebingen.de/"sinz/DC.
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, Obtained by setting proposition 2823 to false, propo-

Fig. 2. Interaction graphs for three subinstancesofymult8
sitions 1248, 2508 and 933 to different truth values (as indicated in Fig. 1), and subsequent unit propagation.
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Fig. 3. On top: Interaction graph of the subinstancdarfgmult8  obtained by setting propositions 2823, 1248 and
933 to false, and subsequent unit propagation. Middle and bottom: Two further interaction gkepluisplays a
magnified view of the top left part of Diagrafof Fig. 2, andD-1 shows the instance obtained frddrby additionally
setting proposition 618 to true, proposition 19 to false, and subsequent unit propagation.
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Fig. 4. Interaction graphs for different SAT instances before (left) and after (right) three steps of a DP algorithm run
(and subsequent simplification by unit propagation). On the top, an instance from automotive product configuration is
shown, in the middle a pigeon hole formula, and on the bottom a random 3-SAT formula with a clause-variable-ration

near the phase-transition point.
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1. On thelongmult8 instance we could observe noticeably many implication chains of considerable
length (this can be seen best in Diagréwl). In most cases, these chains were even made up of
equivalences. However, most of them do not directly occur in the original instance, but only after setting
of a few variables. (This may be typical for problem instances arising from bounded model checking.)

2. The internal structure as indicated by the interaction graphs can vary considerably between different
parts of the search tree (compare, e.g. DiagkaamdB).

3. Decomposition into independent subproblems may naturally occur in a DP run on a real-world instance
(as in the configuration example in Fig. 4), but the decomposition property may equally well be missing
(asinthdongmult8 example).

4. Hard problem instances (pigeon hole, random 3-SAT) not only possess a lower rate of variable reduction
by unit propagation, but also lack the decomposition feature that appeared in the configuration instance.
The hard instances seem to possess a “fractal” or “self-similar” behavior on problem reductions by unit
propagation.

From these observations we (preliminarily) derive the following hypotheses:

1. Both long implication chains and decomposition into independent subproblems may explain the benign
behavior of real-world instances. These are properties that we did not observe in hard instances.

2. Hard problems seem to exhibit a “fractal” or “self-similar” behavior on reductions by case-splitting and
unit-propagation.

Whereas it is not evident how to make use of the second hypothesis, this seems not to be the case for the first
one. Thus, we dare to hope for both theoretical and practical progress based on this observation. E.g., it may
be worthwhile to develop specialized algorithms for instances that are supposed to decompose into smaller
parts. Similarly, it may be profitable to directly optimize existing algorithms to make maximal use of long
implication chains. For the future, we could also imagine to extend our analysis of interaction graphs to
other concepts like scale-freeness, clustering, or betweenness centrality.
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