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Abstract. We introduce a highly structured family of hard satisfiable 3-SAT formulas cor-
responding to an ordered spin-glass model from statistical physics. This model has provably
“glassy” behavior; that is, it has many local optima with large energy barriers between them,
so that local search algorithms get stuck and have difficulty finding the true ground state,
i.e., the unique satisfying assignment. We test the hardness of our formulas with two com-
plete Davis-Putnam solvers, Satz and zChaff, and two incomplete solvers, WalkSAT and the
recently introduced Survey Propagation algorithm SP. We compare our formulas to random
XOR-SAT formulas and to two other generators of hard satisfiable instances, the minimum
disagreement parity formulas of Crawford et al., and Hirsch’s hgen2. For the complete solvers
the running time of our formulas grows exponentially in

√
n, and exceeds that of random

XOR-SAT formulas for small problem sizes. More interestingly, our formulas appear to be
harder for WalkSAT than any other known generator of satisfiable instances.

1 Introduction

3-SAT, the problem of deciding whether a given CNF formula with three literals per clause is
satisfiable, is one of the canonical NP-complete problems. Although it is believed that it requires
exponential time in the worst case, many heuristic algorithms have been proposed and some of them
seem to be quite good on average. To test these algorithms, we need families of hard benchmark
instances; in particular, to test incomplete solvers such as SP (Survey Propagation) and WalkSAT,
we need hard but satisfiable instances. Some families of such instances have been proposed, includ-
ing quasigroup completion [19, 14, 1] and random problems with one or more “hidden” satisfying
assignments [3, 22, 2].

In this paper we introduce a new family of hard satisfiable 3-SAT formulas, based on a model
from statistical physics which is known to have “glassy” behavior. Physically, this means that
its energy function has exponentially many local minima, i.e., states in which any local change
increases the energy, and which moreover are separated by energy barriers of increasing height. In
terms of SAT, the energy is the number of dissatisfied clauses and the global minimum, or “ground
state,” is the unique satisfying assignment. In other words, there are exponentially many truth
assignments which satisfy all but a few clauses, which are separated from each other and from
the satisfying assignment by assignments which dissatisfy many clauses. Therefore, we expect local
search algorithms like WalkSAT to get stuck in the local minima, and to have a difficult time finding
the satisfying assignment.

We start with a spin-glass model introduced by Newman and Moore [17] and also studied by
Garrahan and Newman [10]. It is like the Ising model, except that each interaction corresponds
to the product of three spins rather than two; thus it corresponds to a family of 3-XOR-SAT
formulas. Random 3-XOR-SAT formulas, which correspond to a similar three-spin interaction on
a random hypergraph and which are also known to be glassy, have been studied by Franz, Mézard,
Ricci-Tersenghi, Weigt, and Zecchina [9, 20, 15], Barthel et al. [4], and Cocco, Dubois, Mandler,
and Monasson [6]. In contrast, the Newman-Moore model is defined on a simple periodic lattice,
so it has no disorder in its topology.

We test our formulas against four leading SAT solvers: two complete solvers, zChaff and
Satz, and two incomplete ones, WalkSAT and the recently introduced SP. We compare them with
random 3-XOR-SAT formulas, and also with two other hard satisfiable generators, the minimum
disagreement parity formulas of Crawford et al. [7] and Hirsch’s hgen2 [11]. For DPLL solvers,
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our formulas are easier than random XOR-SAT formulas of the same density in the limit of large
size, although they are harder below a certain crossover at about 900 variables. For SP, both our
formulas and random XOR-SAT formulas appear to be impossible to solve beyond very small sizes.
Most interestingly, our formulas appear to be harder for WalkSAT than any other known generator
of satisfiable instances. We believe this is because our formulas’ lattice structure gives them a very
high “configurational entropy,” i.e., a very large number of local minima, in which local search
algorithms ike WalkSAT get stuck for long periods of time.

2 The model and our formulas

The Newman-Moore model [17] consists of spins σi,j = ±1 on a triangular lattice. Each spin
interacts only with its nearest neighbors, and only in groups of three lying at the vertices of
a downward-pointing triangle. If we encode points in the triangular lattice as (i, j), where the
neighbors of each point are (i± 1, j), (i, j ± 1), and (i± 1, j ∓ 1), the model’s Hamiltonian (energy
function) is

H =
1

2

∑

i,j

σi,jσi,j+1σi+1,j

Let us re-define our variables so that they take Boolean values, si,j ∈ {0, 1}. Then, up to a constant,
the energy can be re-written

H =
∑

i,j

(si,j + si,j+1 + si+1,j) mod 2

In particular, we will focus on the case where the lattice is an L×L rhombus with cyclic boundary
conditions; then

H =
L−1∑

i,j=0

(si,j + si,j+1 mod L + si+1 mod L,j) mod 2 .

Clearly we can think of this as a set of L2 3-XOR-SAT clauses of the form

si,j ⊕ si,j+1 mod L ⊕ si+1 mod L,j = 0

in which case H is simply the number of dissatisfied clauses. Each one of these can then be written
as a conjuction of four 3-SAT clauses,

(si,j ∨ si,j+1 mod L ∨ si+1 mod L,j) ∧ (si,j ∨ si,j+1 mod L ∨ si+1 mod L,j)

∧ (si,j ∨ si,j+1 mod L ∨ si+1 mod L,j) ∧ (si,j ∨ si,j+1 mod L ∨ si+1 mod L,j)

producing a 3-SAT formula with L2 variables and 4L2 clauses for a total of 12L2 literals. There is
always at least one satisfying assignment, i.e., where si,j = 0 for all i, j. However, this satisfying
assignment is unique whenever L has no factors of the form 2m − 1, and in particular when L is a
power of 2 [17].

To “hide” this assignment, we flip the variables randomly; that is, we choose a random assign-
ment A = (ai,j) ∈ {0, 1}L2

and define a new formula in terms of the variables xi,j = si,j ⊕ ai,j .
While some other schemes for hiding a random satisfying assignment in a 3-SAT formula create
an “attraction” that allows simple algorithms to find it quickly, Barthel et al. [4] pointed out that
for XOR-SAT formulas these attractions cancel and make the hidden assignment quite difficult
to find. (Another approach pursued by Achlioptas, Jia, and Moore is to hide two complementary
assignments in an NAESAT formula [2].) Of course, XOR-SAT is solvable in polynomial time by
Gaussian elimination, but standard 3-SAT algorithms can still take exponential time on random
XOR-SAT formulas [4, 20]

In general, XOR-SAT formulas have local minima because flipping any variable will dissatisfy
all the currently satisfied clauses it appears in. However, the lattice structure of the Newman-
Moore model allows us to say much more. In particular, if we call an unsatisfied XOR-clause a
“defect,” then if L is a power of 2, there is exactly one state of the lattice for any choice of defect
locations [17]. To see this, consider the state shown in Figure 1. Here there is a single defect (the
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three cells outlined in black) in which just one XOR-SAT clause (in fact, just one 3-SAT clause)
is dissatisfied. However, since satisfying the XOR-SAT clause at i, j implies that

si,j+1 = si,j ⊕ si+1,j ,

the truth values below the defect are given by a mod-2 Pascal’s triangle (note that if L is a power
of 2 the L’th row of this Pascal’s triangle consists of all 0’s, so wrapping around the torus matches
its first row except for the defect).

This gives a truth assignment which satisfies all but one clause. Moreover, this assignment has
a large Hamming distance from the satisfying assignment; the Hamming distance is the number of
1’s in the Pascal’s triangle, H(L) = Llog

2
3 since it obeys the recurrence H(2L) = 3H(L). It also

has a large energy barrier separating it from the satisfying assignment: to fix the defect with local
moves it is necessary to first introduce log2 L additional defects [17].

Now, by taking linear combinations mod 2 of single-defect assignments we can construct truth
assignments with arbitrary sets of defects, and whenever these defects form an independent set on
the triangular lattice, the corresponding state is a local energy minimum. Thus the number of local
minima equals the number of independent sets, which grows exponentially as κL2

where κ ≈ 1.395
is the hard hexagon constant [10, 5].

i,j i+1,j

i,j+1

Fig. 1. A local minimum with a single defect. Grey and white cells correspond to si,j = 1 and 0 respectively;
the XOR-SAT clause corresponding to the three cells outlined in black is dissatisfied, and all the others are
satisfied. The Hamming distance from the satisfying assignment is the number of grey cells, L

log
2

3 = 27
since L = 8.

To recap, when L = 2k, there is a unique satisfying assignment. The system is glassy in that
there are many truth assignments which are far from the satisfying assignment, but which satisfy
all but a small number of clauses. Escaping these local minima requires us to first increase the
number of unsatisfied clauses by roughly log L. Newman and Moore [17] studied the behavior of
this model under simulated annealing, and found that the system is unable to find its ground state
unless the cooling rate is exponentially slow; similarly, we expect the running time of local search
algorithms like WalkSAT to be exponentially large.

Below, we compare our formulas to random satisfiable 3-XOR-SAT formulas, which were pro-
posed in [20] (and also in [4] as the special case p0 = 1/4). These are formed with a random
hidden assignment in the following way: given variables x1, . . . , xn, select a random truth assign-
ment A ∈ {0, 1}n. Then, m times, select a triple xi, xj , xk uniformly without replacement, and add
the 3-XOR clause consistent with A, i.e. xi⊕xj ⊕xk = ai⊕aj ⊕ak. To compare with our formulas,
we set n = m = L2.
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3 Experimental results

3.1 DPLL solvers: zChaff and Satz

We obtained zChaff from the Princeton web site [23] and Satz from the SATLIB web site [13].
Figure 2 shows a log-log plot of the median number of decisions or branches that zChaff and Satz

took as a function of the lattice size L. For both algorithms the slope for our glassy formulas is
roughly 1, indicating that the running time for zChaff and Satz to solve our formulas grows as
2L = 2

√

n. The reason for this is that, due to a process similar to bootstrap percolation [12], when
a sufficient number of variables are set by the algorithm (for instance, the variables in a single
row) the remainder of the variables in the lattice are determined by unit propagation. For random
3-XOR-SAT formulas, the running time is exponential in n = L2, but with a smaller constant, so
that for L . 30 (i.e., n . 900) our formulas are harder than random XOR-SAT formulas of the
same size.

3.2 SP

SP is an incomplete solver recently introduced by Mézard and Zecchina [16] based on a generaliza-
tion of belief propagation called survey propagation. For random 3-SAT formulas it is extremely
successful; it can find a satisfiable assignment efficiently for random 3-SAT formulas up to size
n = 107 near the satisfiability threshold m/n ≈ 4.25 where random 3-SAT appears to be hardest.
We found that SP cannot solve our formulas for L ≤ 5, i.e., with n = 25 variables. The cavity
biases continue to change, and never converge to a fixed point, so no variables are ever set by the
decimation process. There are several possible reasons for this. One is the large number of local
minima; another is that the symmetry in XOR clauses may produce conflicting messages; another
is that our formulas have small loops which violate SP’s assumption that the formula is locally
treelike and that neighbors are statistically independent. (Random 3-XOR-SAT formulas are also
quite hard for SP, although we found that SP solved about 25% of them with n = m = 25.)

3.3 Local algorithms get stuck: WalkSAT

WalkSAT [18] is an algorithm which combines a random walk search strategy with a greedy bias
towards assignments with more satisfied clauses. WalkSAT has been shown to be highly effective on
a range of problems, such as hard random k-SAT problems, graph coloring, and the circuit synthesis
problem. We performed trials of up to 109 flips for each formula, without random restarts, where
each step does a random or greedy flip with equal probability. Figure 3 shows a semi-log plot of
the median number of flips as a function of n = L2. We only choose four different values of L,
namely 5, 8, 10 and 11, because WalkSAT was unable to solve the majority of formulas with larger
values of L (for which the satisfying assignment is unique) within 109 flips.

For both our formulas and random 3-XOR-SAT formulas, the median running time of WalkSAT
grows exponentially in n. However, the slope of the exponential is considerably larger for our
formulas, making them much harder than the random ones. We believe this is due to a larger
number of local minima.

3.4 Comparison with other hard SAT formulas

To further demonstrate the hardness of our glassy formulas, we compare them to other two gen-
erators of hard instances: the parity formulas introduced by Crawford et al. [7] and the hgen2

formulas introduced by E.A. Hirsch [11]. The parity formulas of [7] are translated from minimal
disagreement parity problems and are considered very hard. While hgen2 does not generate parity
formulas, we include it because it produced the winner of the SAT 2003 competition for the hardest
satisfiable formula [21].

We compared our glassy formulas with 10 formulas of Crawford et al., obtained from [7], and
on 25 hgen2 formulas using the generator obtained from [11]. We ran zChaff, Satz, WalkSAT and
SP; for WalkSAT, we ran 25 trials of up to 109 flips each, and labeled the formula “not solved” if
none of these trials succeeded.
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Fig. 2. The number of branches made by zChaff and Satz on our formulas and on random 3-XOR-SAT
formulas of the same size and density, as a function of the lattice size L. The running time for random
3-XOR-SAT is exponential in L

2 = n, while for our formulas it is exponential in L =
√

n. Nevertheless,
for small values of n our formulas are harder. Each point is the median of 25 trials; only values of L for
which the satisfying assignment is unique are shown.
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Fig. 3. The median number of flips made by WalkSAT on our formulas and random 3-XOR-SAT formulas of
the same size. For our formulas, only values of L for which the satisfying assignment is unique are shown.
Each point is the median of 25 trials.

Comparing our glassy formulas with those of Crawford et al., taking similar numbers of vari-
ables and clauses (e.g. comparing our L = 16 formulas, which have 256 variables and 3072 clauses,
with theirs with roughly 300 variables and 4000 clauses) we see from Table 1 that our formulas
are significantly harder than theirs for zChaff, Satz, and WalkSAT. (SP didn’t solve any of these
formulas, so it doesn’t provide a basis for comparison.) Comparing hgen2 formulas with 195 vari-
ables and 3096 clauses, our formulas are not as hard for the complete solvers, but appear to be
harder for WalkSAT, again perhaps due to their large number of local minima.

4 Conclusion

We have introduced a new generator of hard satisfiable SAT formulas derived from a two-dimensional
spin-glass model. We tested our formulas against four leading SAT solvers, and compared them
with random 3-XOR-SAT formulas, the minimal disagreement parity formulas of Crawford et al.,
and Hirsch’s hgen2 generator. We found that for complete solvers, our formulas are harder than
random XOR-SAT formulas when n is small; more interestingly, for WalkSAT our formulas appear
to be harder than any other known generator of satisfiable instances.

Since XOR-SAT is solvable in polynomial time, it would be interesting to have a provably glassy
set of formulas which would be NP-complete to solve. One approach would be a construction along
the lines of [7], where “noise” is introduced to the underlying parity problem so that it is no longer
polynomial-time solvable.

Finally, we feel that the highly structured nature of our formulas, which makes it possible to
prove the existence of exponentially many local optima with large barriers between them, suggests
an interesting direction for future work. For instance, are there families of formulas based on
spin-glass models in three or more dimensions which would be even harder to solve?
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for further work. C.M. and H.J. are supported by NSF grant PHY-0200909. C.M. is also grateful
to Tracy Conrad for helpful discussions.



18 Haixia Jia, Cris Moore, and Bart Selman

Formula #Literals #Variables #Decisions (zChaff) #Branches (Satz) #Flips (WalkSAT)

par8-1-c.cnf 732 64 17 3 1494
par8-2-c.cnf 780 68 9 1 2371
par8-3-c.cnf 864 75 18 4 5638
par8-4-c.cnf 768 67 7 1 2811
par8-5-c.cnf 864 75 12 3 4828
par16-1-c.cnf 3670 317 2073 1591 2.5 × 108

par16-2-c.cnf 4054 349 11117 499 1.3 × 108

par16-3-c.cnf 3874 334 7505 1489 1.0 × 108

par16-4-c.cnf 3754 324 2181 4415 1.4 × 108

par16-5-c.cnf 3958 341 2758 1296 4.1 × 108

Glassy 8 × 8 768 64 167 50 219455
Glassy 16 × 16 3072 256 39293 32219 not solved

Random 3-XOR-SAT 768 64 23 3 9167
Random 3-XOR-SAT 3072 256 1427 198 3.9 × 108

hgen2 3096 295 not solved 1478340 751723

Table 1. Comparison of our glassy lattice formulas with the parity formulas of Crawford et al., Hirsch’s
hgen2, and random 3-XOR-SAT formulas. Numbers shown are medians of 25 trials each.
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