Combining Component Caching and Clause L earning for Effective
Model Counting

Tian Sang, Fahiem Bacchifs Paul Beamg Henry Kautz, and Toniann Pitassi

1 Computer Science and Engineering, University of Washington, Seattl@8485-2350
{sang, beane, kaut z}@s. washi ngt on. edu
2 Dept. Computer Science, University of Toronto, Toronto ON M5S 1A4
{f bacchus, toni }@s. utoronto. ca

1 Introduction

While there has been very substantial progress in practigalithms for satisfiability, there are many
related logical problems where satisfiability alone is nouwgh. One particularly useful extension to sat-
isfiability is the associated counting problem, #SAT, whiefuires computing the number of assignments
that satisfy the input formula. #SAT’s practical importarstems in part from its very close relationship to
the problem of general Bayesian inference.

#SAT seems to be more computationally difficult than SAT sian algorithm for SAT can stop once
it has found a single satisfying assignment, whereas #S4tiires finding all such assignments. In fact,
#SAT is complete for the class #P which is at least as hardeagdlynomial-time hierarchy [10].

Not only is #SAT intrinsically important, it is also an exkesit test-bed for algorithmic ideas in propo-
sitional reasoning. One of these new ideaf®imula cachind7, 1, 5] which seems particularly promising
when performed in the form callesbmponent cachinfd, 2]. In component caching, disjoint components
of the formula, generated dynamically during a DPLL seaach cached so that they only have to be solved
once. While formula caching in general may have theoretiahlesreven in SAT solvers [5], component
caching seems to hold great promise for the practical ingrmnt of #SAT algorithms (and Bayes infer-
ence) where there is more of a chance to reuse cached résplsticular, Bacchus, Dalmao, and Pitassi [1]
discuss three different caching schemes: simple cachimgponent caching, and linear-space caching and
show that component caching is theoretically competitivh whe best of current methods for Bayesian
inference (and substantially better in some instances).

It has not been clear, however, whether component cachingoeaas competitive in practice as it
is theoretically. We provide significant evidence that ih,cdemonstrating that on many instances it can
outperform existing algorithms for #SAT by orders of magdg. The key to this success is carefully in-
corporating component caching withause learningone of the most important ideas used in modern SAT
solvers. Although both component caching and clause leginvolve recording information collected dur-
ing search, the nature and use of the recorded informati@uisally different. In clause learning, a clause
that captures the reason for failure is computed from ewatgd search path. Component caching, on the
other hand, stores the result computed when solving a shigmno When that subproblem is encountered
again its value can be retrieved from the cache rather theimdnéo solve it again. It is not immediately
obvious how to maintain correctness as well as obtain thegeformance from a combination of these
techniques. In this paper we show how this combination caachéved so as to obtain the performance
improvements just mentioned.

Our model-counting program is built on the ZChaff SAT solf@rl11]. ZChaff already implements
clause learning, and we have added new modules and modified otlaers to support #SAT and to in-
tegrate component caching with clause learning. Ours iditsteimplementation we are aware of that is
able to benefit from both component caching and clause legrkiVe have tested our program against the
r el sat [4, 3] system, which also performs component analysis, basaot cache the computed values of
these components. In most instances of both random andw&dgroblems our new solver is significantly
faster tharr el sat , often by up to several orders of magnitute.

We begin by reviewing DPLL with caching for #SAT [1], and DPMith learning for SAT. We then
outline a basic approach for efficiently integrating comgratrcaching and clause learning. With this basic

% An alternative approach to #SAT was recently reported by Darwich&\l]have not as yet been able to test against
his approach.

Combining Component Caching and Clause Learning for Bffedflodel Counting 21

Table 1 #DPLL Algorithm with component caching
#DPLLCach¢d)
& = RemoveCachedComponefity
if ® = {}, return
else
Pick a variabley in some component € ¢
&~ = ToComponents)|,=o)
#DPLLCaché(® — {¢}) Ud™)
&t = ToComponentSp|,—1)
#DPLLCach¢(® — {¢}) Ud™)
AddToCachés, GetValugd) x 1 + GetValugd™) x 1)
/I RemoveFromCaclié@~ U &™) // this line valid is ONLY for linear space
return

Table 2 DPLL Algorithm with learning
while(1)
if (decide.nextbranch()) // Branching
while(deduce()==conflict) // Unit Propagation
blevel = analyzeconflicts(); // Clause Learning

if (blevel == 0)
return UNSATISFIABLE;
else backtrack(blevel); // Backtracking
else return SATISFIABLE; /I no branch means all variables were asdig

approach, linear-space caching works correctly when coetbivith clause learning, but experimentally
has poor performance. (Simple caching also works but has weese performance; we do not discuss it
further.) On the other hand, component caching with claeaeing has good performance but we show,
somewhat surprisingly, that it will only give a lower bouradhrer than an exact count of the number of mod-
els. We then show how to refine this basic approach siltling pruning This allows component caching
to work properly without significant additional overheacdeTkey idea is to prevent the bad interaction
between cached components and learned clauses from spyeadi

We mention other important implementation issues for camepbcaching such as the use of hash tables
and a method, based on stale dating of cached componentse#ips space small but is more efficient than
linear-space caching. Finally, we show the results of a ekperiments on both random and structured
problems under various combinations of caching and claeaing.

2 Background

#DPLL with Caching: A component of a CNF formul&’ is a set of clauses the variables of which are
disjoint from the variables in the remaining clauges- ¢. Table 1 shows the #DPLL algorithm for solving
#SAT using component caching from [1]. #DPLL takes as inpsgtteof components, each of which shares
no variables with any of the other components and whose wfiogpresents the current residual formula
(the input formula reduced by the currently assigned véggbThe algorithm terminates when the number
of satisfying assignments for each component has been dethpad stored in the cache.

It first removes all components already in the cache and ti&tantiates a variable from one of the
remaining components. The formula®— is obtained by setting = 0 in ¢, and then breaking the resulting
formula up into components (if possibl@ is defined likewise. The algorithm then recursively solves t
original set® of components, but witlp replaced byd—, and then again witky replaced byd*. Upon
return from both recursions, the cache contains the valaét obmponents i+ and®—, and these values
can be combined to obtain the value of the original component

The values computed for the componedtare maintained as the satisfying probability@fPr(¢),
under a uniformly chosen assignment. The number of satigfgssignments af on n variables is thus
#(9) = 2" Pr(9).

Sinced consists of disjoint component($)y () = H¢€¢ Pr(¢). Furthermore, during the computation,
if a component reappears, duplicate computation is avdigesktracting its value from the cache. These
two properties are the keys to the efficiency of this method.

22 Tian Sang et al.

The number of cached components can become extremely ladé sresents a variant of this algo-
rithm that uses only linear space. The only difference isitb@ne more line, RemoveFromCa¢e Ud™),
shown in Table 1, which removes all cached values of childmamments once their parent component’s value
has been computed.

In [1], the component caching algorithm was proved to havemstcase time complexity af°(1)20(w),
wheren is is the number of variables and is the underlying branch-width of the instance. The bound
shown for the linear-space version was somewhat largerstvaase time complexity af€(w1egn) and
space complexity)(n).

DPLL with Learning: Our solver is based on the DPLL SAT solver ZChaff which pearfeclause learning.
ZChaff’s main control loop is shown in Table 2. This loop eegses DPPL iteratively, and uses the learned
clauses rather than explicit returns to guide the backingcK he procedure is to first choose a branch to
descend (a literal to make true), after which unit propageits performed (deduce). If an empty clause is
generated a (conflict) clause explaining that conflict isgotad (analyzeonflict), and added to the current
set of clauses. From the way the conflict clause is constiutiaust be falsified by the current variable
assignments, and we can backtrack to a level where enoubk gétiable assignments have been retracted
so that it is no longer falsified. The loop terminates whenlatgm is found or when the conflict cannot be
unfalsified (which forces a backtrack to level 0).

3 Integrating Component Caching and L earning

Bounded Component Analysia component caching, components are defined relative teeigual for-
mula® = F|, whereF is the original formula and is the current partial assignment. Component analysis
is performed by detecting components within the residuahtda (which, as in ZChaff, is maintained only
implicitly).

A key to integrating clause learning with component caclignt® notice that clause learnimgduces
new clauses; i.e., all of the new clauses are entailed by rig;al formula. Hence, iff’ is the original
formula, and= is any set of learned clauses, then an assignment safisfi@sff it satisfiesF'. Furthermore,
this one-to-one correspondence between satisfying assigs is preserved under partial assignments. That
is, if 7 is a partial assignment to the variablesrafthen the satisfying assignmentsiof, are identical to
the satisfying assignments @f A G)|. (note that(F' A G)|r = F|r A G|r).

This observation provides the basic intuition that to perfeomponent caching it should be sufficient
to examine only the formul#’, ignoring the learned clausés We call this approachounded component
analysis Bounded component analysis is in fact critical to the sssof component caching in the presence
of clause learning for a number of reasons. First, for a gifarmula F, the set of learned clauséscan
be orders of magnitude larger th&h Hence, component analysis @hA G would require significantly
more overhead. Second, the residual learned claus&k. iwill often span the components 1| .. Hence,
component analysis oR A G would reduce the savings achievable from decompositiorallyi the set of
learned clauses grows monotonically throughout the seaocthe clauses which lie in a cached component
at one stage may very well have been augmented by additearaldd clauses the next time that component
would have been encountered. Hence, component analy$is'of would significantly reduce the chance
of reusing cached information.

Although the learned claus&s are ignored when detecting and caching dynamically geegmeam-
ponents, these clauses are used in unit propagations te fireisearch tree. This means that in the subtree
below a partial assignmentthe search will only encounter satisfying assignment8|ofA G| .. As pointed
out above, there is no intrinsic problem with this, sinceggatisfying assignment df |. also satisfie&| .

The difficulty arises, however, from the values that mightbmputed for components &fl .. In particular,
if A is a component of'|,, the search below will only encounter satisfying assignments to the variable
of A thatdo not falsifyF'| . A G|. This might not include all satisfying assignmentsAdf

Lemmal. Thereisaformuld’ = AA B and clause” such thatF’ = C (and thusC' is a potential clause
learned from inputF') and a partial assignment such that

(i) F|~ splits into disjoint componentd|, and B,

(i) C| is defined entirely on the variables 4f,., and

(ii)) Pr(Al) # Pr(Alx A Clr).

Combining Component Caching and Clause Learning for Bffedflodel Counting 23

Proof. Let A be the formuldpoVarVp:)(poVPz Vaz)(a1VasVas) and letB be(pr Vb,) (by Vbs)(ba Vp2).
Itis not hard to check that' = (pg VV @1 V a2) is a consequence @ = A A B. Letw be{py < 0, p; «—
1, P2 — 0}

Observe thatd|, = (a; V ag V a3z) and B|, = (by)(b; V by)(be) are disjoint and the learned clause
C becomeg<”|, = (a7 V a2) which is entirely defined on the variables 4f.. One can easily check that
Pr(A| AC|;) =5/8 <7/8 =Pr(A|,).=

Examining this example, we see that if clause learning walstmoverC, then the number of different
satisfying assignments td|, the search below would encounter would only be 5 not 7: two of these
satisfying assignments would be pruned because theyyfdlsifThe correct value for the whole residual
formula (A A B)|. will be computed, however, becaus®, is UNSAT and thus the value overall will be
zero. Nevertheless, unless we are careful the incorrese\aPr(A|,) could be placed in the cache where
it might then corrupt other values computed in the rest ofsirch. For example, il|. reappears as a
component of another residual formula which happens to tigfishle, then the value computed for that
formula will be corrupted by the incorrect cached valuedof. Although our example did not demonstrate
that the claus€’ would actually be learned, in our experiments we have indacbuntered incorrect cached
values arising from this situation.

The fact thatB|, is UNSAT in this example is not an accident. The problem ofarrmbunting the
satisfying assignments of componentsdf, cannot occur iff|, is satisfiable (all of its components must
then also be satisfiable).

Theorem 1. Letr be a partial assignment such that, is satisfiable, and lel be a component of'| .,
and G|, be the set of learned clausésreduced byr. Then any assignment to the variables/bthat
satisfiesA can be extended to a satisfying assignmertgf A G| ..

Proof. Let (pa, ps) be a satisfying assignment 0., wherep, is an assignment to the variablesAn
andp z is an assignment to the variables outsidedot et p/, be any assignment to the variablesbthat
satisfiesA. Then(p/,, p) must be a satisfying assignmentif;, sinceA is disjoint from the rest of| ..
Furthermoreg(p/,, p 1) must also satisfy|. A G| sinceG| is entailed byF|.. Hencep ; is the required
extension of/,.

This theorem means for every satisfying assignmantf A there must exist at least one path visiting
pa that does not falsify the current formuld|,, A G|.. Hence, in a satisfiable subtree if our algorithm
correctly counts up the number of distinct satisfying assignts toA in the subtree, it will compute the
correct value ford even if the learned clausésare being used to prune the search. The only case we must
be careful of is in an unsatisfiable subtree. In this case ahgevcomputed for the entire residual formula
F|., zero, will still be correct, but we cannot necessarily r@hythe value of components computed in the
unsatisfiable subtree.

Our algorithm puts these ideas together. It performs corapbanalysis along with clause learning,
exploring the subtree below a component in order to compsiteaiue. The learned clauses serve to prune
the subtree and thus make exploring it more efficient. Thepeded values are cached and used again to
avoid recomputing already known values. Thus clause legrand component caching work together to
improve efficiency. The main subtlety of the algorithm istthdaen computing the value of a component
in a subtree, it applies its decomposition scheme recuysireich like the #DPLL algorithm presented
in Table 1. That is, component values are computed by fulithesking up the components into smaller
components.

The Basic Algorithm for #DPLL with Caching and LearningVe present our algorithm #DPLL with
caching and learning in Table 3. For simplicity of preseéntaissume that the input has no unit clauses and
contains only one component. (Our implementation is ndtioted to this case.) The algorithm starts with
the input component on the branchabtemponentstack. At each iteration it pops a componerfrom the
stack, chooses a literélfrom the component and branches on that literal. Its aim totaputePr(v) by
first computingPr(¢|,) thenPr(¢|;) and summing these values to obt&n(¢). If all components have
been solved, then we backtrack to the nearest unflippedidedigral and flip that literal. This can generate
a new set of components to solve.

After ¢ is instantiated unit propagation is performed (deduced,amin ZChaff if a conflict is detected
a clause is learned and we backtrack to a level where theeciaum® longer falsified. If ZChalff backtracks

24 Tian Sang et al.

Table 3#DPLL Algorithm with caching and learning
while(1)
if (lbranchablecomponentstack.empty())
1 = branchablecomponentstack.pop();

choose a literal of) as the decision /I Branching
else backtrack to proper level, or return if badkvel == 0;
while(deduce()==conflict) /I Unit Propagation
analyzeconflicts(); /l Learning
percolateup(lastbranchedcomponent, 0);
backtrack to proper level, or return if badkvel == 0; I/ Backtracking
num.new.component = extraahew.component(); // Detecting components
if (num_new.component == 0)
percolateup(lastbranchedcomponent, 1); // Percolating and caching
else for each newly generated compongnt
if (in _cachef)) /I Checking if in cache

satprob = getcachedvalue));
percolateup(¢, satprob);
if (sat.prob == 0)
backtrack to proper level, or return if badkvel == 0;
else branchableomponenistack.pushgf);

Table 4 Routine removssiblings
if componentp has value 0
remove all its cached siblings and their descendants
if ¢ is the last branched component of its parent
addto_cacheg, 0)
else remove all the cached descendants of

to a node whose left hand branch is already closed, it caiveetite clause labeling the left hand branch
with the newly learned clause to backtrack even furthers T$inot always possible in #SAT, since the left
hand branch need not have been UNSAT.

After |, has been reduced by unit prop, it is broken up into compornextractnew.component.

If there are no components, i.e)|, has become empty, then this means that its satisfying piliipab

1. This is recorded and percolated up by the percalgteoutine as part of the value Bf:(¢). Otherwise
each new component is pushed onto the branchadreponenistack after removing and percolating up the
value of all components already in the cache.

If one of the new components has value zero we know ¢hatis UNSAT and we can backtrack. As
values of components are percolated up, the values of paoemponents eventually become known and
can be added to the cache. This allows an easy implementdtimear space caching: we simply remove
all children components from the cache once the parentisevlahs been completed. When the algorithm
returns, the original formula with its satisfying probdtyiiis in cache.

To facilitate immediate backtracking upon the creationasbzvalued components we cache zero-valued
components. It should be noted that caching zero-valuegooants is not the same as learning conflict
clauses. Learning conflict clauses is equivalent to cacparjal assignments (the partial assignment that
falsifies the clause) that reduce the input formula to an UN®&#&mula. The reduced UNSAT formula might
in fact be UNSAT because it contains a particular UNSAT congmb. This UNSAT component might
reappear in the theory under different partial assignmeétgace caching UNSAT components can detect
some deadends that would be undetected by the learnedl@uséhe other hand, the learned clauses can
be resolved together to generate more powerful clauseseT®@o easily implementable analogous way
of combining UNSAT components into larger UNSAT componehisnce, the benefits of clause learning
and caching of zero-valued components are orthogonal édseful to do both.

Correctness To use full component caching we must insure that the caclmevsr polluted. This can
be accomplished by removing the value of all componentshaat UNSAT siblings using the following
routine within percolataip.

Theorem 2. Using bounded component analysis, #DPLL with componeritieg@and clause learning in
Table 3, plus the routine remaoxsiblings, computes the correct satisfying probability.

Combining Component Caching and Clause Learning for Bffedflodel Counting 25

0.8 r]

04 | 1

0.2 R

cumulative fraction of hits by age

0 1 1 1 1 1 1
0 50000 100000 150000 200000 250000 300000 350000

age

Fig. 1. Cumulative fraction of cache hits by cache age on 50-variable randBNR3formulas, clause/variable ratio=1.6,
100 instances

4 Implementation

We implement the dynamic component detection required égldporithm using a simple depth-first search
on the componend in which the decision literal is chosen; this is repeatedwitit propagation. While

it may seem that this is expensive, as seen by the resultginekt section, the speed-ups that dynamic
component detection provides are typically worth the éff@ode profiling on our examples shows that on
hard random examples, roughly 38% of the total runtime istdube cost of component detection, while

on structured problems the cost of component detectiorddrom less than 10% to nearly 46% of the

total run-time.

A component is represented as a set of unsatisfied claude$algified literals removed. Known com-
ponents and their value are stored in a component cachermapted as a hash table with separate chaining.
This table is checked when a new component is created to geedlue is already in the hash table.

With the number of components encountered during the eioecaf the algorithm, space complexity
can become a serious bottleneck if entries in the cache aes fieshed; this also holds despite the routine
removesiblings, because remablings is not triggered when a residual formula is satiééiaFor exam-
ple, to solve a 75 variable random 3-CNF formula with a hasdisk-variable ratio (for #SAT this is near
1.8 rather than 4.2 because of the large number of satisBgsgynments that need to be examined), we
saw more than 9 million components, while 2GB of physical mgntould only accommodate about 2.5
million components. However, as shown in Figure 1 (usingesshat smaller formulas so that we could
run the experiment) the utility of the cached component&glly declines dramatically with age.

Therefore, we simply give each cached component a sequendeen and eliminate those components
that are too old. This guarantees an upper bound on the sike ohche; we allow the age limit as an input
parameter. For efficiency reasons, age checking is not degedntly; when a new component is cached,
we only perform age checking on the chain that contains tiyneached component.

5 Experimental Results

As described in the last section, in our experiments we implged the cache using a bounded hash table
and a scheme for lazily pruning old entries—this entails siczwlly having to recompute the value of
some components. We also chose the heuristic of alwaysiranon the literal of the current component
appearing in the largest number of clauses. Furthermord&adédo ignore unit propagations generated by
learned clauses that are outside the current componenidhe difficulty of integrating them with the
ZChaff design. Hence, the full power of the learned clausas mot available to us.

We have conducted experiments on random 3-CNF formulas tamctuwred problems from three do-
mains. For random 3-CNF formulas as shown in Figure 2, compioraching+learning has a many orders

26 Tian Sang et al.

[Ratd 10 1.2 14 16§ 18 20
relsat 380911719 9663 7060 7665 4043
CC+L 2 18 21 35 82 74
relsat 599712695 98952022411173 7259
CC+L 5 25 32 411 184 150
relsat 58061374017822111551362(31351Q
CC+L 5 24/ 75 61 131 179
relsat 92132397624066129441534418504
CC+L 6/ 12 70| 90| 133 273
relsat316603117524606§1504711242232998
CC+L| 20, 38 52/ 101 170 547

Fig. 2. Comparison of el sat and component caching+learning (CC+L) on 75 variable random B-foNnulas, 5
samples per clause/variable ratio. The number of solutions in these kesarmpges from a low &f.59 x 102 at ratio
2.0 to a high ofl.96 x 10'® at ratio 1.0.

4e+06 — .
DeC|S|ons —_—
3.5e+06 Hits ----- TR

3e+06

2.5e+06

2e+06

1.5e+06

decisions or hits

le+06

500000

o
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

clause / variable ratio

Fig. 3. Comparison of the median number of decisions and cache hits for ©blarandom 3-SAT formulas, 100
instances per ratio

of magnitude advantage oveel sat . Figure 3 shows that a significant portion of that advantagkie to
the cache hits; there are roughly twice as many cache hite@sians.

For structured problems, in order to compare the performahdifferent caching and learning schemes,
as well as component caching+learning, we also used setbealvariants of our implementation: caching
only, learning only and linear space caching with learfirhe formulas are of three types: satisfiable
layered grid-pebbling formulas discussed in [9] (where 18e add alphabetical tie-breaking for the variable
selection rule); circuit problems from SATLIB; and logitiproblems produced by Blackbox. Component
caching+learning is the best over almost all problems ueatjy by a large margin.

6 Conclusionsand Future Work

We have presented work that makes substantial progressmhiming component caching and clause
learning to create an effective procedure for #SAT that dogemely well when compared with either

technique alone. The experimental results on both rand@#AT3and structural problems indicate that our
program with caching+learning is frequently substantibletter than rel-sat and other schemes without

4 A naive direct implementation of explicit counting on top of ZChaff timesautirtually all of the problems so we
do not include it

Combining Component Caching and Clause Learning for Bffedflodel Counting 27

Grid-pebbing Formulas
layerg vargclausefsolns | relsafcaching+learninfgaching onlylearning onlylinear-space
7| 56 92|7.79E+10 1 0.01 0.04 0.27 0.07,
8 72 1214.46E+14 49 0.02 0.18 4 0.04
9| 90 1545.94E+23| 143§ 0.06 0.50 62 6
10| 110 191{6.95E+18 X 0.06 0.92 6961 0.67
15| 240 4363.01E+54 X 0.53 106 X 465
20| 420 7815.06E+95 X 3 X X X
25 650 12261.81E+151 X 35 X X X
30] 930 17711.54E+218 X 37 X X X
Circuit Problems
Problenj vargclausessolns | relsafcaching+learninfgaching onlylearning onlylinear-space
ra1236 114161.87E+28¢ 18 8 9 9 8
rb|1854 113245.39E+371 80 16 17| 22 22
2bitcomp6| 150 3709.41E+20| 272 201 109 746 424
2bitadd10| 590 14220 667 475 X 509 505
randl 304 5781.86E+54| 1731 31 186 1331 1128
rc|2472 179427.71E+3938 2260 1485 3435 1327 1747
Logistics Problems
Problenj vargclausessolns | relsafcaching+learninfgaching onlyiearning onlylinear-space
prob001 939 37855.64E+20| <1 0.57 588 0.75 102
prob0021337 247773.23E+10 4 65 6432 66 245
prob0031413 294872.80E+11 4 119 5545 118 261
prob0042303 209632.34E+28| 200 239 X 3766 2279
prob0052701 295347.24E+38| 4957 1507 X X X
prob00122324 318578.29E+36|12323 950 X 33082 16162

Fig.4. Comparisons of el sat and different caching and learning schemes on structured prob{¥ndgnotes that
the run exceeded the 12 hour time limit.)

caching or learning and is rarely worse. Bounded componealysis was important for the approach,
where only original clauses contribute to component atglgsd learned clauses only contribute to unit
propagations.

However, our current procedure is still very much a work iogress. We have not yet accommodated
cross-component implications. More importantly, sinoe Itihanching order is critical to the search space,
we need to have good heuristics on both what component telv@nand what variable in a component to
branch on. So far, we simply use DFS for the former and thedyrésrgest degree heuristic for the latter,
so certainly there is plenty of room for improvement.

References

1. F. Bacchus, S. Dalmao, and T. Pitassi. DPLL with Caching: A new ittgoifor #SAT and Bayesian inference. In
Proceedings 44th Annual Symposium on Foundations of Computec§diaston, MA, October 2003. IEEE.

2. F. Bacchus, S. Dalmao, and T. Pitassi. Value elimination: Bayesiamite via backtracking search. Umcer-
tainty in Artificial Intelligence (UAI-2003)pages 20-28, 2003.

3. Roberto J. Bayardo Jr. and Joseph D. Pehoushek. Countindgsséieg connected components.Hroceedings,
AAAI-00: 17th National Conference on Artificial Intelligengages 157-162, 2000.

4. Roberto J. Bayardo Jr. and Robert C. Schrag. Using CST loodkikahniques to solve real-world SAT instances.
In Proceedings, AAAI-97: 14th National Conference on Atrtificial Intellgepages 203-208, 1997.

5. Paul Beame, Russell Impagliazzo, Toniann Pitassi, and NathanliBegeMemoization and DPLL: Formula
Caching proof systems. Proceedings Eighteenth Annual IEEE Conference on Computationaplegity, pages
225-236, Aarhus, Denmark, July 2003.

6. Adnan Darwiche. A compiler for deterministic, decomposable negatomal form. InProceedings, AAAI-02:
18th National Conference on Artificial Intelligenqeages 627—634, 2002.

7. S. M. Majercik and M. L. Littman. Using caching to solve larger probatisliglanning problems. IProceedings
of the 14th AAAlpages 954-959, 1998.

28 Tian Sang et al.

8. Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhamgl 8harad Malik. Chaff: Engineering an
efficient SAT solver. InProceedings of the 38th Design Automation Conferepages 530-535, Las Vegas, NV,
June 2001. ACM/IEEE.

9. Ashish Sabharwal, Paul Beame, and Henry Kautz. Using problemtste for efficient clause learning. Rro-
ceedings of the Sixth International Conference on Theory and ApplisatibBatisfiability Testing (SAT 2003)
2003.

10. Seinosuke Toda. PP is as hard as the polynomial-time hiera&AW Journal on Computind0(5):865-877,
October 1991.

11. Lintao Zhang, Conor F. Madigan, Matthew H. Moskewicz, and Shistalik. Efficient conflict driven learning in
a boolean satisfiability solver. IRroceedings of the International Conference on Computer Aided Dgsémes
279-285, San Jose, CA, November 2001. ACM/IEEE.

