CirCUs: A Hybrid Satisfiability Solver *

HoonSang Jin and Fabio Somenzi

University of Colorado at Boulder
{Ji nh, Fabi o}@col or ado. EDU

Abstract. CirCUs is a satisfiability solver that works on a combination of an And-beveBraph
(AIG), Conjunctive Normal Form (CNF) clauses, and Binary Decidibagrams (BDDs). We show
how BDDs are used by CirCUs to help in the solution of SAT instances giv&lNR. Specifically,
the clauses are sorted by solving a hypergraph linear arrangenobitémr: Then they are clustered by
an algorithm that strives to avoid explosion in the resulting BDD sizes. Ifalumgy results in a single
diagram, the SAT instance is solved directly. Otherwise, search for &gagiassignment is conducted
on the original clauses, enhanced with information extracted from thesBBE also describe a new
decision variable selection heuristic that is based on recognizing thatrihbles involved in a conflict
clause are often best treated as a related group. We present exgatirasults that demonstrate Cir-
CUs's efficiency especially for medium-size SAT instances that aithasolve by traditional solvers
based on DPLL.

1 Introduction

Different representations of Boolean functions have pacatrengths in regard to satisfiability (SAT) prob-
lems. Conjunctive Normal Form (CNF) is often used becausaritbe manipulated efficiently and because
constraints of various provenance are easily translatedtinBoolean circuits, especially semi-canonical
ones like the And-Inverter Graph (AIG) [24], allow a variatlysimplification techniques that may signif-
icantly speed up subsequent analyses. For other repriéeastdike the Disjunctive Normal Form (DNF)
and Binary Decision Diagrams (BDDs) [6], the hurdle lies @meerting the problem specification into the
required form; if this can be accomplished, satisfiabiltytien trivial. In particular, with BDDs, determin-
ing whether a function is satisfiable requires constant,timiéle a satisfying assignment, if it exists, can be
found inO(n) time, wheren is the number of variables. Since converting a Boolean ttitio a BDD may
incur an exponential blow-up, naive application of BDDs AT $acks robustness. On the other hand, there
exist numerous cases in which a proper mix of canonical,(B@Ds) and non-canonical representations
(e.g., CNF or AIG) is very beneficial [25, 8]. This is true, iarficular, of SAT solvers based on search, and
applied to instances for which compact search trees do fgit@xare hard to find.

CirCUs is a SAT solver that accepts as input a combinatioma&l&, CNF clauses, and BDDs. Rather
than converting all into one form as a preprocessing stefi; @& operates on all three representations,
transforming, when appropriate, parts of the input from ohthem to another. For instance, in Bounded
Model Checking (BMC) [4] applications, CirCUs reads theuhps an AIG with additional constraints
given as clauses, and transforms part of the AIG into BDDs$habit may apply powerful implication and
conflict analysis algorithms [23, 21]. The conflict clausasthe other hand, are recorded in CNF form as
suggested in [13]. Because of this ability to operate oniplaltepresentations, we call CirCUshgbrid
SAT solver.

In this paper we discuss how CirCUs handles SAT instancesngiv CNF. After a review of related
work in Sect. 2, in Sect. 4, we show how the clauses may be ftondd” with the help of BDDs so as
to allow the solution of some hard, though not very largepfgms. The conditioning consists of building
BDDs from the clauses in such a way that resource limits ateexaceeded. This implies that more than
one BDD may be built. If that is the case, CNF clauses are ebxidefrom the BDDs to replace the original
ones.

Section 5 presents a new decision variable selection hieyrghich is based on the observation that
variables appearing in one conflict clause should be tremgemirelated group. In Sect. 6 we present em-
pirical evidence that for mid-size hard instances, CNF @wming is very effective, and that our decision
variable heuristic consistently improves over the VSIDI® of [32]. Finally, we draw conclusions in Sect.7.

* This work was supported in part by SRC contract 2003-TJ-920.

48 HoonSang Jin and Fabio Somenzi

2 Related Work

Considerable work has been done in which constraints aresepted by a collection of BDDs. In symbolic
model checking, the transition relation is often represémh such an implicitly conjoined form [38, 7, 19,
30, 17, 22]. The partitioned representation was also appdi¢he problem of minimum-cost satisfiability in
[20]. In our work we leverage several techniques from thidybof literature, especially from [22].

More recently, there has been considerable interest in BBfed techniques for the SAT problem.
Gupta el al. [15] proposed BDD-based learning while soMdwyunded Model Checking (BMC [4]) in-
stances with a circuit SAT solver. The BDDs are used to supgie conflict-learned clauses. They are
created from portions of the circuit that defines the BMCanse. Their approach is similar to our ap-
proach in the sense that they use BDD to extract helpful CNif ft. On the other hand, we do no assume
the existence of a circuit, and our algorithms are different

Damiano and Kukula [9] replace clauses with BDDs in a claddiPLL solver, while in [12], the
authors propose the method that uses BDDs to precomputeletenpokahead information to drive the
search. This is done by converting each BDD into a finite stetehine that reads assignments to the BDD
inputs and outputs implied values. During a preprocesshas@, Franco et al. usérengtheningo infer
additional literals and equivalences, since their BDD ighly localized because of BDD blow-up. The
search is then conducted on the modified BDDs. By contrastetthnique we discuss in this paper either
solves the SAT instance without search, or eventually desran CNF that has been possibly enhanced
using the extracted BDDs.

3 Preliminaries

We consider three ways of representing a Boolean functiba fifst is a Boolean circuit, that is, a directed
acyclic graph whose nodes correspond to input variableBanttan gates. Specifically, we use a form of
Boolean circuit called And-Inverter Graph (AIG) in whichabanode’s function is one of A y, x A -y,
—x Ay, and-z A —y. An AIG contains no isomorphic subgraphs; for this reasids,dalledsemicanonical

The second representation is Conjunctive Normal Form (CNE)NF formula is a set oflauseseach
clause is a set diterals; each literal is either a variable or its complement. Thecfiom of a clause is the
disjunction of its literals, and the function of a CNF forraus$ the conjunction of its clauses.

The last representation of Boolean functions is Binary Bieai Diagrams (BDDs). A BDD is a Boolean
circuit such that each node is labeled by either a Booleastaah (terminal node) or a variable (internal
node). Each internal node has two childréhand E. The function of an internal node labeled byis
defined recursively byv A f(T)) V (—v A f(E)), wheref(T') and f(E) are the functions of’ andE. A
reduced BDD is one in which there are no isomorphic subgrapitsno node has identical children. (Such
nodes are redundant.) A BDD is ordered if the variables emesed along all paths from root to leaves
respect a fixed order. Reduced, ordered BDDs are canonicad: given variable order, two functions are
the same if and only if they have the same BDD [6]. We shallrrefeeduced, ordered BDDs simply as
BDDs. Another form of diagrams that are useful in manipulgtBoolean functions are Zero-suppressed
BDDs (ZDDs). The difference between BDDs and ZDDs is thah&former, nodes with identical children
are removed, while in the latter nodes whd@sehild is the constant O are removed. ZDDs are usually more
concise than BDDs when representing sets of clauses (eagbectorresponding to a path in the diagram).
BDDs, on the other hand, are usually better when repreggtitenfunctions themselves.

CirCUs is a SAT solver based on the DPLL procedure [11, 10]camdlict clause recording [35, 41, 32,
14]. It is built on top of VIS [5, 40], and uses the CUDD pack§gé] for BDD and ZDD manipulations.
Figure 1 describes the core of the decision procedure, winpsiéis an AlG, a set of CNF clauses, and a
set of BDDs.

The pseudo-code of DPLL procedure is presented in Fig. lcd@ioe GIOOSENEXTASSIGNMENT
checks the implication queue. If the queue is empty, thequloe makes decision it chooses one unas-
signed variable and a value for it, and adds the assignmdim ionplication queue. If none can be found, it
returnsf al se. This causes DPLL to return an affirmative answer, becawesagkignment to the variables
is complete and no conflict is detected. If a new assignmenbhlan chosen, its implications are added by
DEDUCEto the queue. If the implications yield a conflict, this is gmad to produce two important results.
The first is a clause implied by the given circuit and objegivT hisconflict clausds added to the clauses
of the circuit. Termination relies on conflict clauses, hessathey prevent the same variable assignment

CirCUs: A Hybrid Satisfiability Solver 49

DPLL() {
while (CHOOSENEXTASSIGNMENT() == FOUND)
while (DeDUCE() == CONFLICT){
blevel = ANALYZE CONFLICT();
if (blevel < 0) return UNSATISFIABLE;
elseBACKTRACK (blevel);

return SATISFIABLE;

O©O~NO U WNPRE

Fig. 1. DPLL algorithm

from being tried more than once. The second result of cordhetysis is thdacktracking levelEach as-
signment to a variable hadevelthat starts from 0 and increases with each new decision. Whenflct is
detected, the algorithm determines the lowest level atlwhidecision was made that eventually caused the
conflict. The search for a satisfying assignment resumes finis level by deleting all assignments made at
higher levels. Thision-chronological backtrackingllows the decision procedure to ignore inconsequential
decisions that have provably no part in the conflict beindyeneal.

The pseudo-code of Fig. 1 is essentially the same used toilbeseNF SAT solvers like GRASP and
Zchaff. However, in CirCUs all operations are carried outtioe three Boolean function representations
at once. CNF clauses and BDDs are connected to the AlG sorbeagation of implications and conflict
analysis proceed seamlessly on all of them. The algorittes agommon assignment stack and implication
queue. The decision variable selection is also common. fiticpéar, the DVH heuristic of Sect. 5 is used
by CirCUs regardless of the mix of function representatidie specific implication and conflict analysis
algorithms for AIG, clauses, and BDDs are described in [2423].

When the input is in the form of an AIG, replacing parts of it bpBs allows CirCUs to reduce the
number of decisions and conflicts without slowing down irogiion too much. In this paper, we consider
the case in which the input is a set of clauses. The stratef®3hfwhich replacesanout-freesubcircuits
of the AIG with BDDs, is not applicable. Instead, we try to irape the given CNF as described in Sect. 4.

4 CNF Conditioning

For hard CNF SAT instances with moderate numbers of vasadnhel clauses, it is often advantageous to
conditionthe given set of clauses. In the following, we describe thgra@gch implemented in CirCUs.

A hypergraphG = (V, H) consists of a set of verticd$ and a multiset of hyperedgés. Each hyper-
edge is a subset &f. A linear arrangemendf G is a bijectiona : V. — {1,...,|V]}.

A set of Boolean functions can be regarded as a hypergraplsdnciating variables to vertices and
functions to hyperedges. A hyperedge connects all the blasaappearing in the function to which it is
associated. Linear arrangement has been used in [1, 2]it@ dariables orders for both BDD construction
and SAT. Our use is closer in spirit to the one of [22], in whiloh objective is to derive a good order for
the conjunction of the functions.

We compute a linear arrangementfbyce-directedor quadratig placement [33], as done in [2]. Given
a linear arrangement;, the algorithm computes treenter of massf hyperedgé: € H thus:

Zveh Q; (U)
|l '

The center of mass of a vertex is computed as the average oéitters of mass of all hyperedges incident
on the vertex. Finallyy,, 1 is obtained by sorting vertices according to their centéraass. The process

is iterated starting from an initial given arrangemegtuntil the cost function stops decreasing, or until the
alloted computational resources are exhausted. The cogtidu is the sum of the hyperedge spans, where
the span of hyperedgeunder arrangemeit is

span(h) = max{a(v)} - min{a(v)} . @)

COM (h) = @)

Once the final vertex arrangement is determined, the ord#veofiyperedges is given by their centers of
mass.

50 HoonSang Jin and Fabio Somenzi

Once the clauses of the given CNF are sorted, if the numberar@bles and clauses do not exceed
specified thresholds, the clustering algorithm of [22] igied to try to conjoin all clauses into one BDD.
The algorithm works on a list of Boolean functions initi@izto the sorted list of clauses. It selects a set of
adjacent functions to be conjoined, and tries to constri&DB for them. If the BDD can be built without
exceeding a threshold on the number of nodes, it replacdsitisgons that were conjoined in the list. The
candidates are chosen so as to favor the confinement of asvadalyles as possible to one cluster only. A
detailed description of the algorithm can be found in [23jeThresholds on the numbers of variables and
clauses are chosen so that it is likely that all clauses wiltdnjoined into one BDD. When this happens,
the SAT instance is solved directly.

For this purpose, the clustering algorithm iterates urttihnew clusters are created in one pass. At each
pass, it creates a list of candidates. Each candidate isr @fpelusters. The list is ordered in decreasing
order of the number of isolated variable to favor candidétes allow many variables to be quantified.
(This is beneficial when trying to build one BDD from all class) As a tie-breaker, the upper bound on
the number of variables in the resulting cluster is useds Pblicy favors the creation of small clusters that
may be merged in subsequent passes. If a given instanceasdfiable, it will result in the constant zero
BDD; otherwise it will result in the constant one BDD becaaBe&ariables are quantified while clustering.

To get a satisfying assignment without saving all the BDRslpced during clustering, we save the last
two BDDs, so that a partial assignments can be extracted tihem. We then use this partial assignment
as a constraint for the CNF SAT solver. This results in a gsigkition of the CNF instance because the
clustering process is such that the last two BDDs tend toadotiie global variables of the function.

If, on the other hand, the initial CNF is too large, or the emjtion of all clauses cannot be carried out
without exceeding the resource limits, several BDDs aré,l®ach to be used in conditioning a subset of
the CNF formula. The clauses are divided istwrt(one or two literals) antbng (more than two literals).
The long clauses are conjoined in the order determined bYirtear arrangement until the BDD for the
resulting cluster exceeds a given size, at which point a rester is started. Lef be the function for such
a cluster. The next step consists of conjoining all the stlartses that share at least one variable wiiito
afunctiong. Sincey is implied by the original set of clauses, any functifyrsuch thaif,Ag = f can replace
f. Therefore, we are interested in a simple CNF representingaion from the intervalf, f VV —g]. This is
computed by the Morreale-Minato algorithm for prime anddundant covering of a Boolean function [31,
27]. The algorithm is called on the intervial f A g, —f], and DeMorgan’s Laws are applied to the resulting
DNF.

The result of the Minato-Morreale algorithm is computed ageao-Suppressed BDD (ZDD) [28].
The clauses are then obtained by enumeration of the pathee &@D. Since the computed CNF is not
guaranteed to have the minimum number of clauses, it is lplesbiat more clauses be extracted than were
used to producég. If this happens, the process is abandoned, and the orijmades are used instead. Even
in such a case, the construction of the BDD may be helpfulvHréable occurring in the clauses conjoined
to obtain f does not occur either ifi or in the other clauses, then it can be universally quantffiea the
original clauses.

The final step of conditioning consists of extracting all slwdauses from the function in the interval
[f, f V —g] chosen by the Morreale-Minato algorithm. This is accon@is by a single traversal of each
BDD, during which the short clauses of a BDD with top nedare obtained from the short clauses of the
children ofv [37]. The procedure extends the one for unit clauses of B6{h procedures, as well as the
Morreale-Minato algorithm, are implemented in CUDD [36].

5 Decision Variable Selection

The choice of the decision variables has a large impact omuhaime of the DPLL procedure. Hence,
considerable attention has been devoted to the problera, {@einstance, [34, 26, 18].) Many rules have
been proposed that are based on the frequency of literalsr@solved clauses; for instance, the Dynamic
Largest Individual Sum (DLIS) heuristic of GRASP [35]. ChHafVSIDS rule [32] disregards whether a
clause is resolved in the interest of speed. It also intreglitbe notion that recently generated conflict
clauses should be given more weight in the choice of the regidle. The VSIDS rule increases the score
of a literal whenever a clause containing that literal iseatith the database. Scores are periodically halved
to give more weight to recently added conflict clauses. Teedi with the highest score is chosen whenever
a decision must be made.

CirCUs: A Hybrid Satisfiability Solver 51

Though non-chronological backtracking helps the DPLL prhae to recover from poorly chosen de-
cision variables, it is only effective once a conflict hasrbdetected. Suppose a conflict clays@volves
variables at decision levelg, .. ., d;. Ideally, one would have;,; = d; + 1 for 0 < i < k. Otherwise,
the work done in propagating the effects of the irrelevatgrirening decisions is wasted. Increasing the
scores of the variables inas done in VSIDS helps because the variables at the highsiatetevels will
be chosen earlier in the sequel of the search. However, tiebles in the conflict clause at the lower deci-
sion levels will also be chosen earlier. More importantlynay take several conflicts for a group of related
variables to have similar scores if their initial scoresarticiently different. In BerkMin [14] this problem
is addressed by choosing the decision literal from the ugiasd variables in the most recent conflict clause
that is unsatisfied. The limitation of this approach is thabaflict clause’s ability to cause its literals to be
treated like a related group is lost as soon as it is no lofgeemost recent unsatisfied clause.

By contrast, the approach followed in CirCUs is the follogirSuppose a new conflict clause=
{lo,...,lx} is generated. Suppose thatis the decision level of;, and, w.l.o.g., thatl; < d;;, for
0 < i < k. The scores of all literals in the clause are incrementedigywath the exception of the liter)
at the current decision level, whose score is set equal téessehan the score ¢f_;. Boosting the score
of the most recent decision variable causes the relatiomdagtl;,_; andl; to be recorded in the scores,
producing a longer lasting effect than in the BerkMin case. &&ll the new heuristic Deepest Variable
Hiking (DVH).

Figure 2 shows two series of decisions to illustrate the aihges of the DVH heuristic. Each circle
represents a decision made by a score-based heuristic amiditk circles represent decisions whose im-
plications are involved in the conflict-learned clause. \Wsume that the conflict occurs in both cases at
decision levell;, 4.

a O i O
din © din1 O
Q) dis2 O
divs @ diss O
disa O> di1 O

GV (b)

Fig. 2. Two examples of decision

If all the decisions are relevant to the current conflictnttree conflict-learned clause will contain literals
implied by all previous decisions as shown in Fig. 2 (a). is tase we backtrack to the decision levgls.

If, however, irrelevant intervening decisions were madehsas those at levets, > andd; 3 in Fig. 2 (b),
then backtracking will be to a lower decision level lilg_, in the example. Since the decisions made at
level d; - andd;, 3 are not related to the conflict-learned clause, the cost d? B those decisions is
wasted. Even though the current scores of the decisionblasiat levelsl; . » andd;3 are higher than the
one at levell; 4, the variable ofi; , is a better choice. Thanks to the DVH decision heuristic, areavoid

the waste of effort even when exploring subspaces in whieltthuse derived from the current conflict is
satisfied.

Since we increase the score of the variable of ldye} to one less than the score of the variable at level
d;+2, the score-based decision heuristic treats them as adejetep. If they are not relevant variables for
the rest of the search, then the periodic decay will reduee ftores thereby decreasing their importance
automatically.

Suppose the data inputs of a multiplexer are driven by twaistilits having disjoint supports and that
the sel signal selects which circuitry is connected to the outpuhaftiplexer. Oncesel is decided then the
variables in the unselected circuitry can be ignored siheg ho longer affect the value of the circuit. Silva

52 HoonSang Jin and Fabio Somenzi

et al. address this problem in [34] and a related approachesepted in [3]. Gupta et al. [16] use circuit
SAT to identify the unobservable gates and disable the spomding clauses in the CNF database. In [39],
the author proposes an efficient translation of CNF fromutiscthat considers unobservable gates. Even
though the DVH heuristic does not explicitly address unoladge gates in a circuit, it does help when such
gates are present thanks to its ability to increase the dipgsashdecision heuristics. For instance, once the
sel signal is assigned and we find a conflict from the circuitrydfeg one of the inputs to the multiplexer,
the DVH heuristic helps the decision procedure focus on #rewhere the conflict was found.

profile of variable scores

initial score
after 10e4 decisions -
60 “
(D] 50 “
g \
o H
o 40 j
! J
q)]
= 30 j
o 7 |
])
20 . ﬂ
;J_,_‘#
10 o L
S B |
0 ! Ll T ‘M wit o B e e e s A ,‘t-,é‘}
0 200 400 600 800 1000 1200 1400 1600

Variable index

Fig. 3. Scores of variables while solving C880.cnf using VSIDS

The VSIDS rule as implemented in Zchaff halves the literalreas once every so many decisions. If
the ratio of decisions to conflicts is large, most scoresylez. In Fig. 3 We show the profile of variable
scores produced by VSIDS for C880.cnf, which is one of SATB@lustrial benchmark. In the figure,
one can find two lines. They are the profiles of initial scomes the scores after 10000 decisions are made.
The variables are sorted according to their initial sco@se can see from the figure that not only most
variables have scores of zero, but also the few non-nulkescake only a very limited number of values.

When this is the case, variables are chosen on the basis dfidiesut information. The DVH heuristic
of CirCUs tries to overcome this problem by reducing the imgj\frequency if the ratio of decisions to
conflicts is too high.

6 Experimental Results

We performed two sets of experiments to assess the impdw 6éthniques described in Sections 4 and 5.
The first set studies the effects of CNF conditioning on theespof the SAT solver for 89 examples from
the hand-made category of the SAT2003 benchmark set. Tiasepées are not very large—up to 2,000
variables and 60,000 clauses—but some of them are hard for searers. The experiments were run on a
2.4 GHz Pentium IV with 500 MB of RAM running Linux. Runs longdan 2,000 s were terminated.

Table 1 shows the examples that were used for the CNF coniij@xperiments. The columns com-
paring CPU time show that CirCUs achieves huge improvenmrgs Zchaff. We also show the numbers
of completed instances with in parenthesis.

CirCUs: A Hybrid Satisfiability Solver 53

Table 1. Examples from hand-made category of the SAT2003 benchmark set

Number CPU time

Benchmark name ||of instances Zchaff | CirCUs
bevan/marg* 14 4330.36(12 1.33(14
bevan/urghlc* 13 14638.84(8 6.77(13
bevan/urgh* 12 20028.83(2 4.81(12
markstrom/mm* 8 1047.22(8) 1262.46(8
purdom/ 4 3160.07(3) 1720.21(4
simon/sat02/x1* 19 38000.00(O 6.97(19
simon/sat02/x2* 9 18000.00(O 3.38(9
simon/sat02/Urquhart* 10 20000.00(O 4.59(10

10" S

10° 5 o O
w o %
~ o
o o ®
E 1 oS8
87]) @ 103 O o °
c) o ©
é 10" 5 £ e
-g] [%) o .
8 © 8 o
g]_00 5]
H 10°
S @
Q 1 © 3 o
6 10_ o o] o] o] o]

o] (]
3 ° %
o]
-2
10 10t
102 10t 1® 1t 1P 10° 10t 107 10° 10*
CirCUs without conditioning: time (s) Zchaff : time (s)
Fig. 4. Effects of CNF conditioning Fig.5.DVH versus VSIDS

Figure 4 shows alog-log scatterplot that compares CirCogmes with and without CNF conditioning.
One can easily identify two groups of instances. Those facwreshaping is effective, including those for
which a monolithic BDD can be built, and those near or aboeentlain diagonal, for which conditioning
does not appreciably change the CNF. In the latter groupptieenead of constructing the BDDs is not
recovered.

It should be pointed out that sorting the clauses by lineeangement and applying the clustering
algorithm of [22] are fundamental for efficiency. Many of #xamples that terminate in a few seconds with
the algorithm of Sect. 4 cannot be completed otherwise.

The second set of experiments compares the DVH variabletgaieheuristic of Sect. 5 to the popular
VSIDS heuristic used in Chaff. We compared three sets of B6:rzchaff [32], CirCUs with VSIDS, and
CirCUs with DVH. CNF conditioning was not used in these eipents that were performed ona 1.7 GHz
Pentium IV with 2 GB of RAM running Linux. The timeout was sét1®,000 s. The SAT instances are
derived from BMC experiments on models from the VIS Verilenbhmark collection [40].

The results are summarized in Fig. 5. The log-log scatteghlows the points comparing CirCUs with
DVH to Zchaff. The two straight lines are regression curvethe formy = k - 2", wherex andn are
obtained by least-square fitting. The upper line is for thpgarison of CirCUs with VSIDS to Zchaff; it is
provided for calibration. It shows that the two solvers angeicomparable in performance when using the
same decision heuristic. The lower line is for CirCUs withiVs. Zchaff. The separation of the two lines
indicates that DVH provides a speedup of almost 2 over VSIDS.

Our implementation of BerkMin’s heuristic did not work soNybut lack of access to the source code
means that we cannot be sure our interpretation of it isffditb the original.

54 HoonSang Jin and Fabio Somenzi

7 Conclusions

We have presented CirCUs, a hybrid SAT solver that operatesnoAnd-Inverter Graph, a set of CNF
clauses, and a set of BDDs. We have described the approadhaispeed up the solver when the input
is in CNF form. By converting the clauses into one or more BPis are often able to either solve the
problem directly, or extract an improved CNF formula. Wedatiown the effectiveness of this strategy on
small-but-hard examples from the SAT2003 benchmark set.

We have also presented an improved decision variable gidwturistic, and shown its effectiveness
by comparing it to the popular VSIDS heuristic of Zchaff.

Our results demonstrate the usefulness of allowing the ®AEBto operate on multiple representations
of the input problem. We intend to explore more applicatiohthis principle, and we are busy improving
the efficiency of the current implementation. For instarnvee,plan to compare the current force-directed
placement approach to the MLP algorithm [29].

References

1. F. A Aloul, I. L. Markov, and K. A. Sakallah. Mince: A static globaliable-ordering for SAT and BDD. Presented
at IWLSO01, June 2001.

2. F. A. Aloul, I. L. Markov, and K. A. Sakallah. FORCE: A fast andsgdo-implement variable-ordering heuristic.
In Proceedings of the Great Lakes Symposium on Mi&jes 116-119, Washington, DC, Apr. 2003.

3. C.W. Barrett, D. L. Dill, and A. Stump. Checking satisfiability of first-erformulas by incremental translation to
SAT. In E. Brinksma and K. G. Larsen, editoFaurteenth Conference on Computer Aided Verification (CAY'02)
pages 236-249. Springer-Verlag, Berlin, July 2002. LNCS 2404.

4. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checkinithaut BDDs. InFifth International
Conference on Tools and Algorithms for Construction and Analysis ofrfBggACAS’'99)pages 193-207, Ams-
terdam, The Netherlands, Mar. 1999. LNCS 1579.

5. R. K. Brayton et al. VIS: A system for verification and synthesis. .IiH&nzinger and R. Alur, editorgighth
Conference on Computer Aided Verification (CAV;98)ges 428—-432. Springer-Verlag, Rutgers University, 1996.
LNCS 1102.

6. R. E. Bryant. Graph-based algorithms for Boolean function martipala IEEE Transactions on Computers
C-35(8):677-691, Aug. 1986.

7. J. R. Burch, E. M. Clarke, and D. E. Long. Representing circuiterafficiently in symbolic model checking. In
Proceedings of the Design Automation Conferepeges 403—407, San Francisco, CA, June 1991.

8. J. R. Burch and V. Singhal. Tight integration of combinational vetificemethods. IrProceedings of the Inter-
national Conference on Computer-Aided Desigages 570-576, San Jose, CA, Nov. 1998.

9. R. Damiano and J. Kukula. Checking satisfiability of a conjunction of BDDn Proceedings of the Design
Automation Conferenc@ages 818-823, June 2003.

10. M. Davis, G. Logemann, and D. Loveland. A machine prograrthforem provingCommunications of the ACM
5:394-397, 1962.

11. M. Davis and H. Putnam. A computing procedure for quantificatioarhelournal of the Association for Com-
puting Machinery7(3):201-215, July 1960.

12. J. Franco, M. Kouril, J. Schlipf, J. Ward, S. Weaver, M. Dratdfiand W. M. Vanfleet. SBSAT: A state-based,
BDD-based satisfiability solver. Imternational Conference on Theory and Applications of Satisfiability Teggstin
(SAT 2003)Portofino, Italy, May 2003.

13. M. K. Ganai, P. Ashar, A. Gupta, L. Zhang, and S. Malik. Combirgtigngths of circuit-based and CNF-based
algorithms for a high-performance SAT solver.Rroceedings of the Design Automation Conferepeges 747—
750, New Orleans, LA, June 2002.

14. E. Goldberg and Y. Novikov. BerkMin: A fast and robust SATvsa In Proceedings of the Conference on Design,
Automation and Test in Europpages 142-149, Paris, France, Mar. 2002.

15. A. Gupta, M. Ganai, C. Wang, Z. Yang, and P. Ashar. LearnmgBDDs in SAT-based bounded model checking.
In Proceedings of the Design Automation Conferepages 824—829, June 2003.

16. A. Gupta, A. Gupta, Z. Yang, and P. Ashar. Dynamic detection ambval of inactive clauses in SAT with
application in image computation. Rroceedings of the Design Automation Conferemmages 536541, Las
Vegas, NV, June 2001.

17. A.Gupta, Z. Yang, P. Ashar, and A. Gupta. SAT-based imag@uatation with application in reachability analysis.
InW. A. Hunt, Jr. and S. D. Johnson, editdfermal Methods in Computer Aided Desjgrages 354—271. Springer-
Verlag, Nov. 2000. LNCS 1954.

18. M. Herbstritt and B. Becker. Conflict-based selection of branchifes. InSixth International Conference on
Theory and Application in Satisfiability Testing (SAT20Q@@&)ges 441-451, Portofino, Italy, May 2003. Springer.
LNCS 29109.

CirCUs: A Hybrid Satisfiability Solver 55

19

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.
41.

A. J. Hu and D. Dill. Efficient verification with BDDs using implicitly conjothénvariants. In C. Courcoubetis,
editor, Fifth Conference on Computer Aided Verification (CAV ;93ges 3—-14. Springer-Verlag, Berlin, 1993.
LNCS 697.

S.-W. Jeong and F. Somenzi. A new algorithm for 0-1 programbrasgd on binary decision diagrams. In T. Sasao,
editor, Logic Synthesis and Optimizatiochapter 7, pages 145-165. Kluwer Academic Publishers, Boston, MA
1993.

H. Jin, M. Awedh, and F. Somenzi. CirCUs: A satisfiability solver gdaowards bounded model checking. In
R. Alur and D. Peled, editorS§ixteenth Conference on Computer Aided Verification (CAV'®gjinger-Verlag,
Berlin, July 2004. To appear.

H. Jin, A. Kuehlmann, and F. Somenzi. Fine-grain conjunctiondidirgy for symbolic reachability analysis. In
International Conference on Tools and Algorithms for Construction analysis of Systems (TACAS 0Prges
312-326, Grenoble, France, Apr. 2002. LNCS 2280.

H. Jin and F. Somenzi. CirCUs: Speeding up circuit SAT with BDDetasplications. Submitted for publication,
Nov. 2003.

A. Kuehlmann, M. K. Ganai, and V. Paruthi. Circuit-based Boole@soning. InProceedings of the Design
Automation Conferen¢cpages 232—-237, Las Vegas, NV, June 2001.

A. Kuehlmann and F. Krohm. Equivalence checking using cutbiaags. IrProceedings of the Design Automation
Conferencegpages 263-268, Anaheim, CA, June 1997.

P. Liberatore. On the complexity of choosing the branching literal inlDRrtificial Intelligence 116(1-2):315—
326, 2000.

S.-1. Minato. Fast generation of irredundant sums-of-prizdisems from binary decision diagrams. $ASIMI
'92, pages 64-73, Kyoto, Japan, Apr. 1992.

S.-1. Minato. Zero-suppressed BDDs for set manipulation in @oatdrial problems. IProceedings of the Design
Automation Conferen¢gpages 272—-277, Dallas, TX, June 1993.

I.-H. Moon, G. D. Hachtel, and F. Somenzi. Border-block tridagéorm and conjunction schedule in image
computation. In W. A. Hunt, Jr. and S. D. Johnson, editéosmal Methods in Computer Aided Desjgrages
73-90. Springer-Verlag, Nov. 2000. LNCS 1954.

I.-H. Moon, J. H. Kukula, K. Ravi, and F. Somenzi. To split or tajoin: The question in image computation. In
Proceedings of the Design Automation Conferepeges 23—-28, Los Angeles, CA, June 2000.

E. Morreale. Recursive operators for prime implicant and imdelat normal form determinatiohEEE Transac-
tions on ComputersC-19(6):504-509, June 1970.

M. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik.afthEngineering an efficient SAT solver. In
Proceedings of the Design Automation Conferepeges 530-535, Las Vegas, NV, June 2001.

N. R. Quinn. The placement problem as viewed from the physicks$ical mechanics. IRroceedings of the
Design Automation Conferengeages 173-178, Boston, MA, June 1975.

J. P. M. Silva. The impact of branching heuristics in propositiont&fgbility algorithms. InProceedings of the
9th Portuguese Conference on Atrtificial Intelligence (ERB¢gpt. 1999.

J. P. M. Silva and K. A. Sakallah. Grasp—a new search algorithsatsfiability. InProceedings of the Interna-
tional Conference on Computer-Aided Desigages 220-227, San Jose, CA, Nov. 1996.

F. Somenzi. CUDD: CU Decision Diagram Package University of Colorado at Boulder,
ftp://visi.colorado.edu/pub/.

F. Somenzi and K. Ravi. Extracting simple invariants from BDDs. ultiphed manuscript, May 2002.

H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-\éntlli. Implicit enumeration of finite state
machines using BDD’s. IRroceedings of the IEEE International Conference on Computer AidesigD pages
130-133, Nov. 1990.

M. N. Velev. Exploiting signal unobservability for efficient translattorCNF in formal verification of micropro-
cessor. Inn the Proceedings of the IEEE/ACM Design, Automation and Test in Eu@amference (DATE)eb.
2004.

URL: http://visi.colorado.edtvis.

H. Zhang. SATO: An efficient propositional prover.Rroceedings of the International Conference on Automated
Deduction pages 272-275, July 1997. LNAI 1249.

