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Abstract. CirCUs is a satisfiability solver that works on a combination of an And-Inverter-Graph
(AIG), Conjunctive Normal Form (CNF) clauses, and Binary DecisionDiagrams (BDDs). We show
how BDDs are used by CirCUs to help in the solution of SAT instances given inCNF. Specifically,
the clauses are sorted by solving a hypergraph linear arrangement problem. Then they are clustered by
an algorithm that strives to avoid explosion in the resulting BDD sizes. If clustering results in a single
diagram, the SAT instance is solved directly. Otherwise, search for a satisfying assignment is conducted
on the original clauses, enhanced with information extracted from the BDDs. We also describe a new
decision variable selection heuristic that is based on recognizing that the variables involved in a conflict
clause are often best treated as a related group. We present experimental results that demonstrate Cir-
CUs’s efficiency especially for medium-size SAT instances that are hard to solve by traditional solvers
based on DPLL.

1 Introduction

Different representations of Boolean functions have peculiar strengths in regard to satisfiability (SAT) prob-
lems. Conjunctive Normal Form (CNF) is often used because itcan be manipulated efficiently and because
constraints of various provenance are easily translated into it. Boolean circuits, especially semi-canonical
ones like the And-Inverter Graph (AIG) [24], allow a varietyof simplification techniques that may signif-
icantly speed up subsequent analyses. For other representations, like the Disjunctive Normal Form (DNF)
and Binary Decision Diagrams (BDDs) [6], the hurdle lies in converting the problem specification into the
required form; if this can be accomplished, satisfiability is then trivial. In particular, with BDDs, determin-
ing whether a function is satisfiable requires constant time, while a satisfying assignment, if it exists, can be
found inO(n) time, wheren is the number of variables. Since converting a Boolean circuit into a BDD may
incur an exponential blow-up, naive application of BDDs to SAT lacks robustness. On the other hand, there
exist numerous cases in which a proper mix of canonical (e.g., BDDs) and non-canonical representations
(e.g., CNF or AIG) is very beneficial [25, 8]. This is true, in particular, of SAT solvers based on search, and
applied to instances for which compact search trees do not exist or are hard to find.

CirCUs is a SAT solver that accepts as input a combination of an AIG, CNF clauses, and BDDs. Rather
than converting all into one form as a preprocessing step, CirCUs operates on all three representations,
transforming, when appropriate, parts of the input from oneof them to another. For instance, in Bounded
Model Checking (BMC) [4] applications, CirCUs reads the input as an AIG with additional constraints
given as clauses, and transforms part of the AIG into BDDs, sothat it may apply powerful implication and
conflict analysis algorithms [23, 21]. The conflict clauses,on the other hand, are recorded in CNF form as
suggested in [13]. Because of this ability to operate on multiple representations, we call CirCUs ahybrid
SAT solver.

In this paper we discuss how CirCUs handles SAT instances given in CNF. After a review of related
work in Sect. 2, in Sect. 4, we show how the clauses may be “conditioned” with the help of BDDs so as
to allow the solution of some hard, though not very large, problems. The conditioning consists of building
BDDs from the clauses in such a way that resource limits are not exceeded. This implies that more than
one BDD may be built. If that is the case, CNF clauses are extracted from the BDDs to replace the original
ones.

Section 5 presents a new decision variable selection heuristic, which is based on the observation that
variables appearing in one conflict clause should be treatedas a related group. In Sect. 6 we present em-
pirical evidence that for mid-size hard instances, CNF conditioning is very effective, and that our decision
variable heuristic consistently improves over the VSIDS rule of [32]. Finally, we draw conclusions in Sect.7.

⋆ This work was supported in part by SRC contract 2003-TJ-920.
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2 Related Work

Considerable work has been done in which constraints are represented by a collection of BDDs. In symbolic
model checking, the transition relation is often represented in such an implicitly conjoined form [38, 7, 19,
30, 17, 22]. The partitioned representation was also applied to the problem of minimum-cost satisfiability in
[20]. In our work we leverage several techniques from this body of literature, especially from [22].

More recently, there has been considerable interest in BDD-based techniques for the SAT problem.
Gupta el al. [15] proposed BDD-based learning while solvingBounded Model Checking (BMC [4]) in-
stances with a circuit SAT solver. The BDDs are used to supplement conflict-learned clauses. They are
created from portions of the circuit that defines the BMC instance. Their approach is similar to our ap-
proach in the sense that they use BDD to extract helpful CNF from it. On the other hand, we do no assume
the existence of a circuit, and our algorithms are different.

Damiano and Kukula [9] replace clauses with BDDs in a classical DPLL solver, while in [12], the
authors propose the method that uses BDDs to precompute complete lookahead information to drive the
search. This is done by converting each BDD into a finite statemachine that reads assignments to the BDD
inputs and outputs implied values. During a preprocessing phase, Franco et al. usestrengtheningto infer
additional literals and equivalences, since their BDD is highly localized because of BDD blow-up. The
search is then conducted on the modified BDDs. By contrast, the technique we discuss in this paper either
solves the SAT instance without search, or eventually operates on CNF that has been possibly enhanced
using the extracted BDDs.

3 Preliminaries

We consider three ways of representing a Boolean function. The first is a Boolean circuit, that is, a directed
acyclic graph whose nodes correspond to input variables andBoolean gates. Specifically, we use a form of
Boolean circuit called And-Inverter Graph (AIG) in which each node’s function is one ofx ∧ y, x ∧ ¬y,
¬x∧y, and¬x∧¬y. An AIG contains no isomorphic subgraphs; for this reason, it is calledsemicanonical.

The second representation is Conjunctive Normal Form (CNF). A CNF formula is a set ofclauses; each
clause is a set ofliterals; each literal is either a variable or its complement. The function of a clause is the
disjunction of its literals, and the function of a CNF formula is the conjunction of its clauses.

The last representation of Boolean functions is Binary Decision Diagrams (BDDs). A BDD is a Boolean
circuit such that each node is labeled by either a Boolean constant (terminal node) or a variable (internal
node). Each internal node has two children,T andE. The function of an internal node labeled byv is
defined recursively by(v ∧ f(T )) ∨ (¬v ∧ f(E)), wheref(T ) andf(E) are the functions ofT andE. A
reduced BDD is one in which there are no isomorphic subgraphs, and no node has identical children. (Such
nodes are redundant.) A BDD is ordered if the variables encountered along all paths from root to leaves
respect a fixed order. Reduced, ordered BDDs are canonical: for a given variable order, two functions are
the same if and only if they have the same BDD [6]. We shall refer to reduced, ordered BDDs simply as
BDDs. Another form of diagrams that are useful in manipulating Boolean functions are Zero-suppressed
BDDs (ZDDs). The difference between BDDs and ZDDs is that in the former, nodes with identical children
are removed, while in the latter nodes whoseT child is the constant 0 are removed. ZDDs are usually more
concise than BDDs when representing sets of clauses (each clause corresponding to a path in the diagram).
BDDs, on the other hand, are usually better when representing the functions themselves.

CirCUs is a SAT solver based on the DPLL procedure [11, 10] andconflict clause recording [35, 41, 32,
14]. It is built on top of VIS [5, 40], and uses the CUDD package[36] for BDD and ZDD manipulations.
Figure 1 describes the core of the decision procedure, whoseinput is an AIG, a set of CNF clauses, and a
set of BDDs.

The pseudo-code of DPLL procedure is presented in Fig. 1. Procedure CHOOSENEXTASSIGNMENT

checks the implication queue. If the queue is empty, the procedure makes adecision: it chooses one unas-
signed variable and a value for it, and adds the assignment tothe implication queue. If none can be found, it
returnsfalse. This causes DPLL to return an affirmative answer, because the assignment to the variables
is complete and no conflict is detected. If a new assignment has been chosen, its implications are added by
DEDUCE to the queue. If the implications yield a conflict, this is analyzed to produce two important results.
The first is a clause implied by the given circuit and objectives. Thisconflict clauseis added to the clauses
of the circuit. Termination relies on conflict clauses, because they prevent the same variable assignment
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1 DPLL() {
2 while (CHOOSENEXTASSIGNMENT() == FOUND)
3 while (DEDUCE() == CONFLICT){
4 blevel = ANALYZE CONFLICT();
5 if (blevel≤ 0) return UNSATISFIABLE;
6 elseBACKTRACK(blevel);
7 }
8 return SATISFIABLE;
9 }

Fig. 1.DPLL algorithm

from being tried more than once. The second result of conflictanalysis is thebacktracking level: Each as-
signment to a variable has alevelthat starts from 0 and increases with each new decision. When aconflict is
detected, the algorithm determines the lowest level at which a decision was made that eventually caused the
conflict. The search for a satisfying assignment resumes from this level by deleting all assignments made at
higher levels. Thisnon-chronological backtrackingallows the decision procedure to ignore inconsequential
decisions that have provably no part in the conflict being analyzed.

The pseudo-code of Fig. 1 is essentially the same used to describe CNF SAT solvers like GRASP and
Zchaff. However, in CirCUs all operations are carried out onthe three Boolean function representations
at once. CNF clauses and BDDs are connected to the AIG so that propagation of implications and conflict
analysis proceed seamlessly on all of them. The algorithm uses a common assignment stack and implication
queue. The decision variable selection is also common. In particular, the DVH heuristic of Sect. 5 is used
by CirCUs regardless of the mix of function representations. The specific implication and conflict analysis
algorithms for AIG, clauses, and BDDs are described in [24, 32, 23].

When the input is in the form of an AIG, replacing parts of it by BDDs allows CirCUs to reduce the
number of decisions and conflicts without slowing down implication too much. In this paper, we consider
the case in which the input is a set of clauses. The strategy of[23], which replacesfanout-freesubcircuits
of the AIG with BDDs, is not applicable. Instead, we try to improve the given CNF as described in Sect. 4.

4 CNF Conditioning

For hard CNF SAT instances with moderate numbers of variables and clauses, it is often advantageous to
conditionthe given set of clauses. In the following, we describe the approach implemented in CirCUs.

A hypergraphG = (V,H) consists of a set of verticesV and a multiset of hyperedgesH. Each hyper-
edge is a subset ofV . A linear arrangementof G is a bijectionα : V → {1, . . . , |V |}.

A set of Boolean functions can be regarded as a hypergraph by associating variables to vertices and
functions to hyperedges. A hyperedge connects all the variables appearing in the function to which it is
associated. Linear arrangement has been used in [1, 2] to derive variables orders for both BDD construction
and SAT. Our use is closer in spirit to the one of [22], in whichthe objective is to derive a good order for
the conjunction of the functions.

We compute a linear arrangement byforce-directed(or quadratic) placement [33], as done in [2]. Given
a linear arrangementαi, the algorithm computes thecenter of massof hyperedgeh ∈ H thus:

COM (h) =

∑
v∈h αi(v)

|h|
. (1)

The center of mass of a vertex is computed as the average of thecenters of mass of all hyperedges incident
on the vertex. Finally,αi+1 is obtained by sorting vertices according to their centers of mass. The process
is iterated starting from an initial given arrangementα0 until the cost function stops decreasing, or until the
alloted computational resources are exhausted. The cost function is the sum of the hyperedge spans, where
the span of hyperedgeh under arrangementα is

span(h) = max
v∈h

{α(v)} − min
v∈h

{α(v)} . (2)

Once the final vertex arrangement is determined, the order ofthe hyperedges is given by their centers of
mass.
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Once the clauses of the given CNF are sorted, if the numbers ofvariables and clauses do not exceed
specified thresholds, the clustering algorithm of [22] is invoked to try to conjoin all clauses into one BDD.
The algorithm works on a list of Boolean functions initialized to the sorted list of clauses. It selects a set of
adjacent functions to be conjoined, and tries to construct aBDD for them. If the BDD can be built without
exceeding a threshold on the number of nodes, it replaces thefunctions that were conjoined in the list. The
candidates are chosen so as to favor the confinement of as manyvariables as possible to one cluster only. A
detailed description of the algorithm can be found in [22]. The thresholds on the numbers of variables and
clauses are chosen so that it is likely that all clauses will be conjoined into one BDD. When this happens,
the SAT instance is solved directly.

For this purpose, the clustering algorithm iterates until no new clusters are created in one pass. At each
pass, it creates a list of candidates. Each candidate is a pair of clusters. The list is ordered in decreasing
order of the number of isolated variable to favor candidatesthat allow many variables to be quantified.
(This is beneficial when trying to build one BDD from all clauses.) As a tie-breaker, the upper bound on
the number of variables in the resulting cluster is used. This policy favors the creation of small clusters that
may be merged in subsequent passes. If a given instance is unsatisfiable, it will result in the constant zero
BDD; otherwise it will result in the constant one BDD becauseall variables are quantified while clustering.

To get a satisfying assignment without saving all the BDDs produced during clustering, we save the last
two BDDs, so that a partial assignments can be extracted fromthem. We then use this partial assignment
as a constraint for the CNF SAT solver. This results in a quicksolution of the CNF instance because the
clustering process is such that the last two BDDs tend to contain the global variables of the function.

If, on the other hand, the initial CNF is too large, or the conjunction of all clauses cannot be carried out
without exceeding the resource limits, several BDDs are built, each to be used in conditioning a subset of
the CNF formula. The clauses are divided intoshort (one or two literals) andlong (more than two literals).
The long clauses are conjoined in the order determined by thelinear arrangement until the BDD for the
resulting cluster exceeds a given size, at which point a new cluster is started. Letf be the function for such
a cluster. The next step consists of conjoining all the shortclauses that share at least one variable withf into
a functiong. Sinceg is implied by the original set of clauses, any functionfg such thatfg∧g = f can replace
f . Therefore, we are interested in a simple CNF representing afunction from the interval[f, f ∨¬g]. This is
computed by the Morreale-Minato algorithm for prime and irredundant covering of a Boolean function [31,
27]. The algorithm is called on the interval[¬f ∧ g,¬f ], and DeMorgan’s Laws are applied to the resulting
DNF.

The result of the Minato-Morreale algorithm is computed as aZero-Suppressed BDD (ZDD) [28].
The clauses are then obtained by enumeration of the paths of the ZDD. Since the computed CNF is not
guaranteed to have the minimum number of clauses, it is possible that more clauses be extracted than were
used to producef . If this happens, the process is abandoned, and the originalclauses are used instead. Even
in such a case, the construction of the BDD may be helpful: If avariable occurring in the clauses conjoined
to obtainf does not occur either inf or in the other clauses, then it can be universally quantifiedfrom the
original clauses.

The final step of conditioning consists of extracting all short clauses from the function in the interval
[f, f ∨ ¬g] chosen by the Morreale-Minato algorithm. This is accomplished by a single traversal of each
BDD, during which the short clauses of a BDD with top nodeν are obtained from the short clauses of the
children ofν [37]. The procedure extends the one for unit clauses of [20].Both procedures, as well as the
Morreale-Minato algorithm, are implemented in CUDD [36].

5 Decision Variable Selection

The choice of the decision variables has a large impact on therun time of the DPLL procedure. Hence,
considerable attention has been devoted to the problem. (See, for instance, [34, 26, 18].) Many rules have
been proposed that are based on the frequency of literals in unresolved clauses; for instance, the Dynamic
Largest Individual Sum (DLIS) heuristic of GRASP [35]. Chaff’s VSIDS rule [32] disregards whether a
clause is resolved in the interest of speed. It also introduces the notion that recently generated conflict
clauses should be given more weight in the choice of the next variable. The VSIDS rule increases the score
of a literal whenever a clause containing that literal is added to the database. Scores are periodically halved
to give more weight to recently added conflict clauses. The literal with the highest score is chosen whenever
a decision must be made.
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Though non-chronological backtracking helps the DPLL procedure to recover from poorly chosen de-
cision variables, it is only effective once a conflict has been detected. Suppose a conflict clauseγ involves
variables at decision levelsd0 . . . , dk. Ideally, one would havedi+1 = di + 1 for 0 < i < k. Otherwise,
the work done in propagating the effects of the irrelevant intervening decisions is wasted. Increasing the
scores of the variables inγ as done in VSIDS helps because the variables at the higher decision levels will
be chosen earlier in the sequel of the search. However, the variables in the conflict clause at the lower deci-
sion levels will also be chosen earlier. More importantly, it may take several conflicts for a group of related
variables to have similar scores if their initial scores aresufficiently different. In BerkMin [14] this problem
is addressed by choosing the decision literal from the unassigned variables in the most recent conflict clause
that is unsatisfied. The limitation of this approach is that aconflict clause’s ability to cause its literals to be
treated like a related group is lost as soon as it is no longer the most recent unsatisfied clause.

By contrast, the approach followed in CirCUs is the following. Suppose a new conflict clauseγ =
{l0, . . . , lk} is generated. Suppose thatdi is the decision level ofli, and, w.l.o.g., thatdi < di+1 for
0 < i < k. The scores of all literals in the clause are incremented by one with the exception of the literallk
at the current decision level, whose score is set equal to oneless than the score oflk−1. Boosting the score
of the most recent decision variable causes the relation betweenlk−1 andlk to be recorded in the scores,
producing a longer lasting effect than in the BerkMin case. We call the new heuristic Deepest Variable
Hiking (DVH).

Figure 2 shows two series of decisions to illustrate the advantages of the DVH heuristic. Each circle
represents a decision made by a score-based heuristic and the dark circles represent decisions whose im-
plications are involved in the conflict-learned clause. We assume that the conflict occurs in both cases at
decision leveldi+4.

(b)(a)

di

di+1

di+2

di+3

di

di+1

di+2

di+3

di+4di+4

Fig. 2.Two examples of decision

If all the decisions are relevant to the current conflict, then the conflict-learned clause will contain literals
implied by all previous decisions as shown in Fig. 2 (a). In this case we backtrack to the decision leveldi+3.
If, however, irrelevant intervening decisions were made, such as those at levelsdi+2 anddi+3 in Fig. 2 (b),
then backtracking will be to a lower decision level likedi+2 in the example. Since the decisions made at
level di+2 anddi+3 are not related to the conflict-learned clause, the cost of BCP for those decisions is
wasted. Even though the current scores of the decision variables at levelsdi+2 anddi+3 are higher than the
one at leveldi+4, the variable ofdi+4 is a better choice. Thanks to the DVH decision heuristic, we can avoid
the waste of effort even when exploring subspaces in which the clause derived from the current conflict is
satisfied.

Since we increase the score of the variable of leveldi+4 to one less than the score of the variable at level
di+2, the score-based decision heuristic treats them as a related group. If they are not relevant variables for
the rest of the search, then the periodic decay will reduce their scores thereby decreasing their importance
automatically.

Suppose the data inputs of a multiplexer are driven by two subcircuits having disjoint supports and that
thesel signal selects which circuitry is connected to the output ofmultiplexer. Oncesel is decided then the
variables in the unselected circuitry can be ignored since they no longer affect the value of the circuit. Silva
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et al. address this problem in [34] and a related approach is presented in [3]. Gupta et al. [16] use circuit
SAT to identify the unobservable gates and disable the corresponding clauses in the CNF database. In [39],
the author proposes an efficient translation of CNF from circuits that considers unobservable gates. Even
though the DVH heuristic does not explicitly address unobservable gates in a circuit, it does help when such
gates are present thanks to its ability to increase the dynamics of decision heuristics. For instance, once the
sel signal is assigned and we find a conflict from the circuitry feeding one of the inputs to the multiplexer,
the DVH heuristic helps the decision procedure focus on the part where the conflict was found.
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Fig. 3.Scores of variables while solving C880.cnf using VSIDS

The VSIDS rule as implemented in Zchaff halves the literal scores once every so many decisions. If
the ratio of decisions to conflicts is large, most scores decay to 0. In Fig. 3 We show the profile of variable
scores produced by VSIDS for C880.cnf, which is one of SAT 2003 industrial benchmark. In the figure,
one can find two lines. They are the profiles of initial scores and the scores after 10000 decisions are made.
The variables are sorted according to their initial scores.One can see from the figure that not only most
variables have scores of zero, but also the few non-null scores take only a very limited number of values.

When this is the case, variables are chosen on the basis on insufficient information. The DVH heuristic
of CirCUs tries to overcome this problem by reducing the halving frequency if the ratio of decisions to
conflicts is too high.

6 Experimental Results

We performed two sets of experiments to assess the impact of the techniques described in Sections 4 and 5.
The first set studies the effects of CNF conditioning on the speed of the SAT solver for 89 examples from
the hand-made category of the SAT2003 benchmark set. These examples are not very large—up to 2,000
variables and 60,000 clauses—but some of them are hard for many solvers. The experiments were run on a
2.4 GHz Pentium IV with 500 MB of RAM running Linux. Runs longer than 2,000 s were terminated.

Table 1 shows the examples that were used for the CNF conditioning experiments. The columns com-
paring CPU time show that CirCUs achieves huge improvementsover Zchaff. We also show the numbers
of completed instances with in parenthesis.
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Table 1.Examples from hand-made category of the SAT2003 benchmark set

Number CPU time
Benchmark name of instances Zchaff CirCUs

bevan/marg* 14 4330.36(12) 1.33(14)
bevan/urqh1c* 13 14638.84( 8) 6.77(13)
bevan/urqh* 12 20028.83( 2) 4.81(12)

markstrom/mm* 8 1047.22( 8) 1262.46( 8)
purdom/ 4 3160.07( 3) 1720.21( 4)

simon/sat02/x1* 19 38000.00( 0) 6.97(19)
simon/sat02/x2* 9 18000.00( 0) 3.38( 9)

simon/sat02/Urquhart* 10 20000.00( 0) 4.59(10)
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Figure 4 shows a log-log scatterplot that compares CirCUs runtimes with and without CNF conditioning.
One can easily identify two groups of instances. Those for which reshaping is effective, including those for
which a monolithic BDD can be built, and those near or above the main diagonal, for which conditioning
does not appreciably change the CNF. In the latter group, theoverhead of constructing the BDDs is not
recovered.

It should be pointed out that sorting the clauses by linear arrangement and applying the clustering
algorithm of [22] are fundamental for efficiency. Many of theexamples that terminate in a few seconds with
the algorithm of Sect. 4 cannot be completed otherwise.

The second set of experiments compares the DVH variable selection heuristic of Sect. 5 to the popular
VSIDS heuristic used in Chaff. We compared three sets of 50 runs: Zchaff [32], CirCUs with VSIDS, and
CirCUs with DVH. CNF conditioning was not used in these experiments that were performed on a 1.7 GHz
Pentium IV with 2 GB of RAM running Linux. The timeout was set at 10,000 s. The SAT instances are
derived from BMC experiments on models from the VIS Verilog benchmark collection [40].

The results are summarized in Fig. 5. The log-log scatterplot shows the points comparing CirCUs with
DVH to Zchaff. The two straight lines are regression curves of the form y = κ · xη, whereκ andη are
obtained by least-square fitting. The upper line is for the comparison of CirCUs with VSIDS to Zchaff; it is
provided for calibration. It shows that the two solvers are quite comparable in performance when using the
same decision heuristic. The lower line is for CirCUs with DVH vs. Zchaff. The separation of the two lines
indicates that DVH provides a speedup of almost 2 over VSIDS.

Our implementation of BerkMin’s heuristic did not work so well, but lack of access to the source code
means that we cannot be sure our interpretation of it is faithful to the original.
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7 Conclusions

We have presented CirCUs, a hybrid SAT solver that operates on an And-Inverter Graph, a set of CNF
clauses, and a set of BDDs. We have described the approach used to speed up the solver when the input
is in CNF form. By converting the clauses into one or more BDDs, we are often able to either solve the
problem directly, or extract an improved CNF formula. We have shown the effectiveness of this strategy on
small-but-hard examples from the SAT2003 benchmark set.

We have also presented an improved decision variable selection heuristic, and shown its effectiveness
by comparing it to the popular VSIDS heuristic of Zchaff.

Our results demonstrate the usefulness of allowing the SAT solver to operate on multiple representations
of the input problem. We intend to explore more applicationsof this principle, and we are busy improving
the efficiency of the current implementation. For instance,we plan to compare the current force-directed
placement approach to the MLP algorithm [29].
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