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Abstract. An approximation algorithm for random k-SAT formulas (MAX-R-kSAT) is
herein discussed. The proposed algorithm is similar to the unit clause with majority rule
algorithm studied in [5] for the random 3-SAT problem. The results obtained improve the
9/8-approximation given in [6] for MAX-R-3SAT to a 10/9.5-approximation. The new ap-
proximation ratio is achieved by using a better algorithm than the one proposed in [6], along
with a new upper bound on the maximum number of clauses that can be satisfied in a
random k-SAT formula [1].

1 Introduction

We propose the analysis of a very simple greedy algorithm for approximating the Maximum random
k-SAT problem (MAX-R-kSAT). Our work was inspired by the open question given by Fernandez
de la Vega et alin [6] for the approximation of MAX-R-3SAT. Our algorithm performs better than
the one proposed in [6] for approximating MAX-R-3SAT. The results are taken much further using
Achlioptas et al [1] recent upper bounds on the maximum number of clauses that can be satisfied
on a random k-SAT formula.

Our analysis relies on the method of differential equations studied by Wormald in [9]. This
method have been used extensively before in the approximation (lower bounds) of the satisfiability
threshold (see [2], [7] and [3]). In order to use this method for MAX-kESAT we have to be able to
compute not the probability of finding an assignment, as done in [2], [7] and [3], but the expected
number of clauses that are going to be falsified by the assignment. This is the main difference
between our analysis and the ones done before for random k-SAT.

2 Outline of the results

Given n the number of variables and H = {Cy,C4,C3,...,C;} a k + 1-tuple of non negative in-
tegers. Denote @ as the space of all CNF formulas with C; i-clauses. For instance, the space of
k-SAT formulas with m clauses is @y with H = {0,0,...,m}. We consider the uniform distribution
on the space @p. For a k-CNF formula, m denotes the number of clauses.

For a k-CNF formula F', let m(F) be the maximum number of clauses that can be satisfied
in F, and m4(F) be the number of clauses satisfied by the assignment A. Let » = m/n be the
ratio between clauses and variables. Let r(F') be the ratio clause/variables for the k-CNF formula F.

We say that a sequence of random &, events occurs with high probability (w.h.p) if Pr (En)
goes to 1 as n goes to infinity.

We propose a randomized algorithm which, given a k-CNF formula F', outputs an assignment

A, leading to m 4 (F') as our approximation to m(F'). Thus, we prove that for a fixed k, there exists
a function g(r) such that ma(F) = g(r)m + o(m) w.h.p, i.e

Pr{ma(F) = g(r)m + o(m)}
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goes to 1 as m goes to infinity.

Then we prove that
Pr{m(F) > a(g(r)m +o(m))}

goes to zero as m goes to infinity. Where « is the approximation constant.

In part of the analysis we use an upper bound for the value of m(F’), as given in the results of
Achlioptas et al. [1]. We prove the following result for random MAX-3SAT.

Theorem 1. There is a polynomial time algorithm for approzimating MAX-R3SAT within the
ratio o = 10/9.1.

Remark: That result is easily improved to obtain a 10/9.5 approximation ratio.

3 The Algorithm

The algorithm is divided in two parts, as follows:

Algorithm
begin
if r(F)>rg
output a random assignment A
Otherwise
output the assignment A given by
the Majority algorithm
end

That is, if r(F) > r for some constant value ry, the output is a random assignment. If
r(F) < r the algorithm proceeds as follows: While there is an unassigned variable, it selects a
random unassigned variable x. If = appears positive in at least half of the clauses, = is assigned to
true. Otherwise, it is assigned to false. The formula is simplified after each assignment.

Majority algorithm
begin
While unset variables exist do
Pick an unset variable z at random
If x appears positively in at least half of the remaining
clauses (in which = appears)
Set © =TRUE
Otherwise
Set © =FALSE
Del&Shrink
end do
output the current assignment
end

Chao and Franco proposed in [5] a unit clause with majority rule algorithm for the study of
the satisfiability threshold for random 3-SAT formulas. The majority rule used in [5] attempts
to minimize the number of 3-clauses that become 2-clauses, and the unit clause rule attempts to
satisfy every unit clause that is produced while running the algorithm. Such strategy is aimed to
find satisfying assignments. Since we consider the analysis of the algorithm mostly in the unsat
phase, the unit clause rule does not help much. Many unit clauses and empty clauses will appear
while running the algorithm. Our aim is to minimize the number of empty clauses at the end of
the algorithm. The algorithm in [7] for 3-SAT assigns literals by their degree (number of clauses
with that literal) and gives also the same weight to literals appearing in 2 and 3 clauses.

The technique used to analyze this algorithm is similar to the one used in [2] for the analysis of
the unit clause with majority rule algorithm. Not using the unit clause rule enabled us to compute
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the number of empty (not satisfiable) clauses produced by the final assignment.

The algorithm is also similar to the one proposed in [6]. The algorithm in [6] assigns statically
every variable to its best value, i.e x is assigned to true if x appears positive in at least half of
the clauses otherwise is assigned to false. Our algorithm does almost the same but dynamically.
It assigns one variable at a time and shrinks the formula before considering a new variable to be
assigned. Therefore, clauses are not taken into consideration by the algorithm if they are already
satisfied.

4 Analysis

4.1 For r > ry

This part of the analysis deals with the random assignment. Note that a random assignment A
will satisfy (1 — 55)m + o(m) clauses w.h.p.

Lemma 1. [6] For every € there exits re, such that for r <r.j and F' a random k-SAT formula

Pr{m(F) > (1 - %)m(l +e)}

goes to zero as n goes to infinity.

Proof. Let g =1 — 2%

Pr{m(F) > gm(l1+¢e)} = Pr{|A: ma(F) > gm(1 +¢€)| > 0}
< E{|A:ma(F)>gm(1+¢)|}
=2" Pr{ Bin(m,q) > gm(1 +¢€)}

2
)

qme

< 2"exp(—

2k+llog2

The last inequality follows by Chernoff bound, and goes to zero for r > r. j, = @1y

O

For instance, in order to obtain a 10/9.1-approximation for MAX-R3SAT, we take e = 1/0.91—1
and we obtain that a random assignment is enough for r > 183. For a 10/9.5-approximation we
need ry > 643.5.

4.2 Forr < rg

In this part of the analysis we are going to use Wormalds’s theorem [9]. Wormalds’s theorem pro-
vides a method for analyzing parameters of a random process using differential equations.

The analysis of how to use Wormalds theorem in this case is very similar to the one for the
Unit Clause with Majority (UCWM) algorithm in [2]. The main difference is that we can write
equations for the number of unit clauses and the number of empty clauses in the formula.

Using Wormalds’s theorem we can keep track of C;(¢) -the number of clauses with 4 literals
in the formula-, and Cy(t) -the number of empty clauses at time ¢-. At each time, the algorithm
assigns a value to a variable, therefore 0 < ¢t < n. We are interested in the number of empty clauses
at time t = n, that is Co(n). Co(n) is equal to the number of clauses not satisfied by the assignment
found by the algorithm.

Let H(t) = {Co(t),Ci1(t),...,Cr(t)}. It is not difficult to prove (see [2] and [8]) that at any step
t the formula obtained by assigning the first ¢ selected variables is a random formula (uniform in
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the space @) given the values of the parameters C;(t). This fact enables to compute the expected
value of C;(t + 1) — C;(¢) given the values C;(t), i.e

1C; i+ 1)C;
BC(t+1) - GO H(O] =~ + i 0,

where i =0,1...%k and §;»; is 0 if i = j and 1 otherwise. Let’s give the definition of p and p,.

Let F' € &p(;) and X be the random variable defined as number of clauses in F' where the
random literal [ appears. The distribution of X can be approximated by a Poisson with parameter
A= ﬁ, where p = C1(t) + 2C5(t) + - - - + kCi(t). In our algorithm, we take a random variable
x and satisfies the literal that appears the most among {z,Z}. Denote Z the number of clauses
in which the falsified literal appears. Z has the same distribution as min(X, X’), where X’ is

independent to X and has the same distribution. Finally denote ) = E(Z).

Wormalds’ theorem says that we can approximate the values of C;(¢) by the solutions ¢;(z) of
the following system of differential equations.

de; ic i+ 1)c

2 5
dx 1 7k

Fori=0,1,...,k and with initial conditions ¢;(0) = G0 fere p = c1+2co+ -+ ke the scaled

n
number of literals in the formula and A = ﬁ w1y has the same definition as before.

At any time t < n, ¢;(t/n) give a good approximation of the scaled values of C;(t). More
precisely,

Ci(nx) = ¢;i(z)n + o(n)

with high probability when n goes to infinity.

Wormalds’ theorem holds for 0 < z < 1 —e. We use € = 107°. To go around the problem we
can analyzed the algorithm for 0 < ¢ < n(1 — ¢) and then counting all the remaining clauses plus
the empty clauses as not satisfied by the assignment. Let t. = n(1—¢), we use the following bound

CO(”) < CO(te) + Cl(te) + -+ Ck(té)’

5 Proof of the theorem. Results for MAX-R-3SAT

We solve the differential equations numerically using the ode45 function of matlab. The values of
)y are approximated numerically. The results are in agreement with simulations of the algorithm
on randomly generated 3-SAT formulas.

In figure 1 we give the results of approximating 1 — COT("), the fraction the clauses that are sat-
co(xze)ter(we)tea(xe)tes(xe)

r

isfied by the algorithm, with a lower bound 1 —
and ¢;(z) is the solution of the differential equations.

, where z. =1 —e=t./n

We will use the following result in the proof of theorem 1.
Theorem 2. [1] Let F be a k-CNF random formula if
r(F) > 7(p) = 2"log 2/(p + (1 — p)log(1 — p))
the probability that m(F) > (1 — 28(1 — p))m goes to zero as n goes to infinity.

The result in theorem 2 provides with an upper bound in the maximum number of clauses that
can be satisfied in a typical random k-CNF formula.
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Fig. 1. Results of the differential equation approach. Plot of the function g(r) (fraction clauses satisfied by the algorithm)
versus the clause density r.

Proof. of Theorem 1
To prove the 10/9.1-approximation for MAX-R-3SAT we choose r3 = 183 as the parameter for the
algorithm. The result for r = m/n > r3 holds just by the lemma in the subsection 4.1.

For r = m/n < rs we divide the arguments. First notice that the function g(r) is a decreasing

function of r. For r < 12, the function g(r) > 0.9357 so % < # < % w.h.p.

For 12 < r < 183 using theorem 2 for p = 0.8, k = 3 we get that for » > 11.6 the probability
that 0.975m clauses can be satisfied goes to zero as n goes to infinity. Therefore, we can use that

m(F) <0.975m w.h.p and the fact that for r < 183 g(r) > 0.8922 to obtain TZ:(?) < Og‘?jfﬁ < 9%01

w.h.p.
O

As we just did in the proof of theorem 1 and using more carefully theorem 2 together with
the results of the analysis in subsection 4.2 we can get a 10/9.5-approximation result (we need to
divided the arguments in many small intervals of the parameter r and use the same argument we
gave above).
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