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Abstract. (k, s)-SAT is the propositional satisfiability problem restricted to instances where
each clause has exactly k distinct literals and every variable occurs at most s times. It is
known that there exists an exponential function f such that for s ≤ f(k) all (k, s)-SAT
instances are satisfiable, but (k, f(k)+1)-SAT is already NP-complete (k ≥ 3). Exact values
of f are only known for k = 3 and k = 4, and it is open whether f is computable.

We introduce a computable function f1 which bounds f from above and determine the values
of f1 by means of a calculus of integer sequences. This new approach enables us to improve
the best known upper bounds for f(k), generalizing the known constructions for unsatisfiable
(k, s)-SAT instances for small k.

1 Introduction

We consider CNF formulas represented as sets of clauses. Let k, s be fixed positive integers. We
denote by (k, s)-CNF the set of formulas F where every clause of F has exactly k different literals
and each variable occurs in at most s clauses of F . We denote the sets of satisfiable and unsatisfiable
formulas by SAT and UNSAT, respectively.

It was observed by Tovey [1] that all formulas in (3, 3)-CNF are satisfiable, and the satisfiability
problem restricted to (3, 4)-CNF is already NP-complete. This was generalized in Kratochv́ıl, et
al. [2] where it is shown that for every k ≥ 3 there is some integer s = f(k) such that

1. all formulas in (k, s)-CNF are satisfiable, and
2. (k, s + 1)-SAT, the SAT problem restricted to (k, s + 1)-CNF, is already NP-complete.

The function f can be defined by the equation

f(k) := max{ s : (k, s)-CNF ∩UNSAT = ∅ }.

From [1] it follows that f(3) = 3 and f(k) ≥ k for k > 3.
Asymptotic upper and lower bounds for f(k) have been obtained in [2,3,4]. Since typical for-

mulas arising in practice have clauses of small width, it is interesting to know the exact values of
f(k) for small k. However, it is not known whether f is computable.

Dubois [5] constructs unsatisfiable formulas in (4, 6)-CNF and (5, 11)-CNF, respectively, which
implies 4 ≤ f(4) ≤ 5 and 5 ≤ f(5) ≤ 10. As reported in [3], Stř́ıbrná shows in her M.Sc. thesis
[6] that (4, 5)-CNF contains unsatisfiable formulas, hence f(4) = 4. More recently, Berman, et al.
[7] construct unsatisfiable formulas belonging to the classes (3, 4)-CNF, (4, 6)-CNF, (5, 9)-CNF,
improving Dubois’ upper bound for f(5) to 8.

The quoted constructions are quite involved. We present a new and simple technique for gen-
erating unsatisfiable (k, s)-CNF formulas. By this new technique we can improve on best known
upper bounds for f(k); Table 1 gives an overview of upper bounds for f(k).

By means of a construction due to Kratochv́ıl, et al. [2], one can construct from any unsatisfiable
(k, s)-CNF formula an unsatisfiable (k + 1, 2s)-CNF formula; thus

f(k + 1) ≤ 2f(k) + 1. (1)
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By generalization of a theorem by Savický and Sgall [3] one can derive the equation

f(3k) ≤ 3 · 4k−1f(k), (2)

which yields asymptotically better upper bounds for f(k); for small k, however, (1) is preferable.
The upper bounds for f(k) obtained by (1) are still relatively large compared to upper bounds
obtained by genuinely constructed formulas (see also Table 1).

Tov[1] Dub[5] Stř[6] BKS[7] this paper
3 ≤ f(3) ≤ 3 3 3 3 3
4 ≤ f(4) ≤ 7∗ 5 4 5 4
5 ≤ f(5) ≤ 15∗ 10 9∗ 8 7
7 ≤ f(6) ≤ 31∗ 21∗ 19∗ 17∗ 11

13 ≤ f(7) ≤ 63∗ 43∗ 39∗ 35∗ 17
24 ≤ f(8) ≤ 127∗ 87∗ 79∗ 71∗ 29
41 ≤ f(9) ≤ 255∗ 175∗ 159∗ 143∗ 51

Table 1. Best known lower and upper bounds of f(k) for small k. Entries labeled by an asterisk
are obtained via equation (1) from the preceding value of the respective paper. The lower bounds
are taken from [7].

Our approach is to focus on a certain class MU(1) of unsatisfiable formulas. Formulas in MU(1)
have a simple structure and can be constructed in a recursive way (see the next section). Therefore
it is easier to search for unsatisfiable formulas in (k, s)-CNF ∩MU(1) than in (k, s)-CNF.

For k ≥ 3 let f1(k) denote the largest integer such that (k, s)-CNF ∩ MU(1) = ∅. Since all
formulas in MU(1) are unsatisfiable, always f(k) ≤ f1(k) holds. Our examples below show that
f(k) = f1(k) for k = 3, 4. It is interesting to know whether f(k) = f1(k) holds for k ≥ 5.

By our new approach, the construction of unsatisfiable (k, s)-CNF formulas can be reduced
to applying a certain operation to ordered integer sequences. Therefore, the construction can be
easily automatized (a saturation algorithm is outlined below). The next theorem summarizes the
results we have obtained so far by running a C++ implementation of the saturation algorithm.

Theorem 1
The following classes contain unsatisfiable formulas: (3, 4)-CNF, (4, 5)-CNF, (5, 8)-CNF,

(6, 12)-CNF, (7, 18)-CNF, (8, 30)-CNF. (9, 52)-CNF. Hence, the satisfiability problem restricted
to any of these classes is NP-complete.

The existence of unsatisfiable formulas in (5, 8)-CNF and (6, 12)-CNF is certified by the deriva-
tions given in Fig. 3 and the appendix, respectively. For the other classes mentioned in Theorem 1,
certificates can be found in a file archive, available at the authors’ homepages.

2 The Class MU(1)

A CNF formula is minimal unsatisfiable if it is unsatisfiable and removing any of its clauses makes
it satisfiable. We denote the class of minimal unsatisfiable CNF formulas by MU. Since every
unsatisfiable formula F has a minimal unsatisfiable subset F ′, and since F ∈ (k, s)-CNF implies
F ′ ∈ (k, s)-CNF, we can restrict ourselves to the class MU. In other words,

f(k) = max{ s : (k, s)-CNF ∩MU = ∅ }.

The deficiency δ(F ) of a formula with n variables and m clauses is defined as δ(F ) = m − n.
It is known that formulas in MU have always positive deficiency [8]; therefore it is natural to
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parameterize MU by deficiency and to consider the classes MU(k) := {F ∈ MU : δ(F ) = k } for
k ≥ 1.

Let us consider the function

f1(k) = max{ s : (k, s)-CNF ∩MU(1) = ∅ }. (3)

Evidently, we have f1(k) ≥ f(k), and so any upper bound for f1(k) is also an upper bound for f(k).
In the sequel we will show that f1 is computable, and that for small k we can actually compute
the exact value of f1(k).

Formulas in MU(1) have been widely studied (see, e.g., [8,9,10,11,12]). In particular, the fol-
lowing result of Davydov, et al. [9] (a proof is implicitly present in [8]), shows that formulas in
MU(1) can be recursively decomposed (var(F ) denotes the set of variables which occur (positively
or negatively) in the formula F ).

Lemma 1 (Davydov, et al. [9]) F ∈ MU(1) if and only if either F = {∅} or F is the disjoint
union of formulas F ′

1, F
′
2 such that for a variable x we have

– var(F ′
1) ∩ var(F ′

2) = {x} and {x, x} ⊆
⋃

C∈F C;
– F1 := {C \ {x} : C ∈ F ′

1 } ∈ MU(1);
– F2 := {C \ {x} : C ∈ F ′

2 } ∈ MU(1).

If F has a variable x with the properties stated in the above lemma, then following [11] we call the
pair (F1, F2) a disjunctive splitting of F in x. Furthermore we call the number of clauses of F in
which x occurs the degree of the splitting (F1, F2).

For example, the formula F = {{x, z}, {x, y}, {y, z}, {z, w}, {z, w}} belongs to MU(1) since it
can be decomposed by disjunctive splittings as displayed in Fig. 1. Note that F ∈ (2, 4)-CNF
since all clauses have size 2 and every literal occurs at most 4 times. In general, if we decompose
a formula F by splittings of degree ≤ s, then evidently every variable of F occurs in at most s
clauses. Hence we have the following lemma.

{∅} {∅}
(split in x)

{{x}, {x}} {∅}
(split in y)

{{x}, {x, y}, {y}})

{∅} {∅}
(split in w)

{{w}, {w}}
(split in z)

F = {{x, z}, {x, y}, {y, z}, {z, w}, {z, w}}

Fig. 1. Decomposition of a formula F ∈ MU(1) by disjunctive splittings.

Lemma 2 If all clauses of a nonempty formula F have size k, then F ∈ (k, s)-CNF ∩ MU(1) if
and only if F can be decomposed by disjunctive splittings of degree ≤ s.

3 A Calculus of Integer Sequences

Let σ = (a1, . . . , an) be a finite nonincreasing sequence of positive integers (a stairway, for short).
That is, a1 ≥ · · · ≥ an ≥ 1. We call ai an entry of σ, n the length of σ, and denote the empty
sequence by ε. For a finite sequence of non-negative integers σ let σord denote the stairway obtained
from σ by removing 0’s and by ordering the entries nonincreasingly.

For a fixed integer s ≥ 2 we consider the (nondeterministic) binary rule N(s) that allows to
infer a stairway σ from stairways σ1, σ2 as follows: For i = 1, 2 obtain σ′i from σi by decrementing
si ≥ 1 entries, s1 + s2 ≤ s, and put σ := (σ′1σ

′
2)

ord. An N(s)-derivation is a finite binary rooted
tree T whose vertices are labeled by stairways such that if a vertex v labeled by σ has parents
v1, v2 labeled by σ1, σ2, respectively, then σ can be inferred from σ1, σ2 by the rule N(s). For a set
of stairways Γ and a stairway σ we write Γ `N(s) σ if there is an N(s)-derivation T whose root is
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(3) (3)

(2,2) (3)

(2,2,1)

(3) (3)

(2,2)

(1,1,1,1,1)

Fig. 2. An N(4)-derivation.

labeled by σ and whose leaves are labeled by sequences from Γ . In particular, we have Γ `N(s) σ
if σ ∈ Γ . If Γ is a singleton {σ′} we simply write σ′ `N(s) σ.

As an example, the N(4)-derivation displayed in Fig. 2 shows that (3) `N(4) (1, 1, 1, 1, 1).
Let F = {C1, . . . , Cm} 6= ∅ be a formula with 0 ≤ |C1| ≤ · · · ≤ |Cm| ≤ k, and let n be the

largest integer in {1, . . . ,m} with |Cn| < k. We associate with F the stairway

Σk(F ) := (k − |C1|, . . . , k − |Cn|).

For dealing formally with the rule N(s) in the proofs below, the following concept is convenient.
Consider stairways σ1 = (a1, . . . , aj) and σ2 = (aj+1, . . . , am). The definition of N(s) says that a
stairway σ can be inferred from σ1, σ2 if and only if there is a set I ⊆ {1, . . . ,m} with I∩{1, . . . , j} 6=
∅, I ∩ {j + 1, . . . ,m} 6= ∅, and |I| ≤ s such that σ = (a′1, . . . , a

′
m)ord where

a′i =

{
ai − 1 if i ∈ I;
ai otherwise.

We call the set I an index set associated with the inference. Note that the index set I is not
necessarily unique.

The next lemma, which can be shown by induction, asserts that N(s)-derivations and formulas
in MU(1) ∩ (k, s)-CNF are closely related.

Lemma 3 For every stairway σ the following holds true. (k) `N(s) σ if and only if there is a
formula F ∈ MU(1) with Σk(F ) = σ which can be decomposed by disjunctive splittings of degree
≤ s.

Proof. (⇒) Assume (k) `N(s) σ and let T be an N(s)-derivation of σ from (k) with a minimal
number n of inference steps (we count every non-leaf of T as an inference step). We proceed by
induction on n. If n = 0 then σ is the axiom (k) and we put F = {∅}. Clearly Σk(F ) = (k) and
we are done. Now assume n ≥ 1, and let σ1, σ2 be the stairways from which σ is inferred in T . Let
σ1 = (a1, . . . , aj), σ2 = (aj+1, . . . , am), and σ = (c1, . . . , cn). Let I ⊆ {1, . . . ,m} be an index set
associated with the inference of σ from σ1, σ2, so that we can write σ = (a′1, . . . , a

′
m)ord.

By induction hypothesis (the subderivations of T ending in σ1 and σ2, respectively, have less
than n steps), there are formulas F1, F2 ∈ MU(1) with Σk(Fi) = σi such that Fi can be decomposed
by disjunctive splittings of degree ≤ s. We may assume that F1 and F2 do not share a variable (we
can always rename variables). Let F ′

i be the subset of Fi containing all clauses of size k, i = 1, 2.
Since Σk(Fi) = σi, we can write F1 = {C1, . . . , Cj} ∪ F ′

1 and F2 = {Cj+1, . . . , Cm} ∪ F ′
2 such that

ai = k − |Ci| for i = 1, . . . ,m. We pick a new variable x and define F := {D1, . . . , Dm} ∪ F ′
1 ∪ F ′

2

where

Di =


Ci ∪ {x} if i ∈ I and i ≤ j

Ci ∪ {x} if i ∈ I and i > j,
Ci otherwise.

Consequently, (F1, F2) is a disjunctive splitting of F of degree ≤ s. Since Σk(F ) = σ, the first part
of the lemma is shown true.

(⇐) Let F ∈ MU(1), Σk(F ) = σ, be decomposable by disjunctive splittings of degree ≤ s. We
show by induction on the number n of variables of F that (k) `N(s) σ. If n = 0 then F = {∅} and
so σ = (k); hence (k) `N(s) σ. Now assume n > 0. By assumption, F has a disjunctive splitting
(F1, F2) of degree ≤ s. Let σi := Σk(Fi), i = 1, 2. Since |var(Fi)| ≤ |var(F )| − 1, it follows by
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induction hypothesis that (k) `N(s) σi, i = 1, 2. It remains to show that σ can be inferred from
σ1, σ2 by the rule N(s).

By definition of a disjunctive splitting, F is the disjoint union of formulas F ′
1, F

′
2 such that

for a variable x the conditions stated in Lemma 1 are satisfied. Consequently, for some nonempty
subsets Gi ⊆ Fi, i = 1, 2, we have

F ′
1 = {C ∪ {x} : C ∈ G1 } ∪ (F1 \G1),

F ′
2 = {C ∪ {x} : C ∈ G2 } ∪ (F2 \G2).

Since the splitting is of degree ≤ s, |G1| + |G2| ≤ s follows. Every clause in G1 ∪ G2 corresponds
bijectively to an entry a of σi which is decreased by one (thus either a ≥ 2 and a − 1 is an entry
of σ, or a = 1 and a− 1 is omitted in σ). The other clauses C ∈ Fi \Gi with |C| < k correspond
bijectively to entries a = k−|C| of σi which give rise to entries of σ. Thus σ can indeed be inferred
from σ1, σ2 by the rule N(s) and so (k) `N(s) σ follows. ut

Note that in general there are many different formulas corresponding to one N(s)-derivation in
the sense of Lemma 3.

For the example in Fig. 1, we have F = {{x, z}, {x, y}, {y, z}, {z, w}, {z, w}} and Σ3(F ) =
(1, 1, 1, 1, 1). The disjunctive splitting of degree≤ 4 depicted in Fig. 1 corresponds to the N(4)-deriva-
tion in Fig. 2 by means of Lemma 3.

An immediate consequence of Lemma 3 is the following characterization of the function f1

defined in (3). Recall that ε denotes the empty sequence.

Theorem 2 f1(k) = min{ s : (k) `N(s) ε } − 1.

Proof. Let s ≥ 2 such that (k) `N(s) ε. By Lemma 3, there exists a formula F ∈ MU(1), Σk(F ) = ε,
which can be decomposed by splittings of degree ≤ s. Thus variables of F occur in at most s
clauses. Moreover, Σk(F ) = ε implies that all clauses of F have size k, thus F ∈ (k, s)-CNF
follows. Consequently f1(k) ≤ s− 1.

Now assume f1(k) ≥ s; i.e., (k, s)-CNF ∩ MU(1) = ∅. Consequently, no F ∈ MU(1) with
Σk(F ) = ε can be decomposed by splittings of degree ≤ s. By Lemma 3, it follows that (k) `N(s) ε
does not hold. Hence the theorem is shown true. ut

4 Computing f1

The results of the previous section suggest the following saturation algorithm for determining
whether f1(k) ≤ s for given k, s:

– Start with the set S0 = {(k)}.
– For i > 0, obtain Si as the union of Si−1 and the set of all sequences σ which can be inferred

from σ1, σ2 ∈ Si−1 by the rule N(s).

If we reach a set Si which contains the empty sequence ε then we stop, as we then know that
f1(k) < s. Otherwise, if we reach a fixed-point i where Si = Si−1, then we know f1(k) ≥ s. We will
show below that a refined saturation algorithm actually terminates, hence that a finite procedure
for determining f1(k) exists.

When we run the saturation algorithm, it is desirable to avoid the derivation of sequences which
are “worse” than other already derived sequences. For example, if we have already derived (3, 2, 1),
it is certainly superfluous to add the sequence (3, 3, 1) or the sequence (3, 2, 1, 1) to the cumulating
set. We will see below that also, say, (3, 3) can be ignored if we already have obtained (3, 2, 1).
Formally, we base the comparison of sequences on the following definition.

Let σ, σ′ be stairways. We say that σ′ is obtained from σ = (a1, . . . , an) by elementary flattening
if one of the following prevails:

1. For some p ∈ {1, . . . , n} we have σ′ = (a′1, . . . , a
′
n)ord where

a′i =

{
ai − 1 if i = p,
ai otherwise.
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2. Consider σ to have an additional entry an+1 with value 0. For some p, q ∈ {1, . . . , n + 1} with
ap > aq we have σ = (a′1, . . . , a

′
n+1)

ord where

a′i =


ai − 1 if i = p,
ai + 1 if i = q,
ai otherwise.

We exclude the case ap = aq + 1 to ensure σ 6= σ′.

That is, σ′ is obtained by decrementing some entry ap and possibly incrementing some smaller
entry aq. We say that σ′ dominates σ if either σ′ = σ or σ′ can be obtained from σ by multiple
applications of elementary flattening.

The next lemma states that if σ is dominated by σ′, then σ is “worse” than σ′ in the above
sense.

Lemma 4 If σ can be inferred from σ1, σ2 by rule N(s), and if σi is dominated by σ′i 6= ε, i = 1, 2,
then σ is dominated by some σ′ which can be inferred from σ′1, σ

′
2 by rule N(s).

Proof. Since σi is dominated by σ′i, σ′i can be obtained from σi by ri applications of elementary
flattening for some ri ≥ 0; in symbols, σi

ri−→ σ′i. We proceed by induction on r = r1 + r2. If r = 0
then σ1 = σ′1, σ2 = σ′2, and we put σ′ = σ.

Now assume r > 0. W.l.o.g., we may assume that r2 > 0. Hence there is a stairway σ∗2 such
that

σ2
r2−1−−−→ σ∗2

1−→ σ′2.

The induction hypothesis yields that there is a stairway σ∗ which dominates σ and can be obtained
from σ′1, σ

∗
2 by the rule N(s). We have to show that there exists a stairway σ′ which can be obtained

from σ′1, σ
′
2 by rule N(s) and which dominates σ∗; i.e., that the diagram

σ′1σ
∗
2

1−−−−→ σ′1σ
′
2yN(s)

yN(s)

σ∗
≤1−−−−→ σ′

commutes. Let σ′1 = (a1, . . . , aj), σ∗2 = (aj+1, . . . , am), σ∗ = (a′1, . . . , a
′
m)ord, am+1 := 0. Fur-

thermore, let b1, . . . , bm+1 be integers such that σ′1σ
′
2 = (b1, . . . , bm+1)ord where ai = bi except

bp = ap−1 and possibly bq = aq+1 for ap > aq+1, j ≤ p < q ≤ m+1. We put σ′ = (b′1, . . . , b
′
m+1)

ord

and define b′i in the following case distinction.
First assume bp > 0 or ap = a′p. We put b′i = bi − ai + a′i. It follows that σ′ can be obtained

from σ∗ by one elementary flattening, thus σ′ dominates σ∗.
Now assume that 0 = bp = ap − 1 = a′p. It follows that no entry aq is incremented, since

otherwise we would have aq < 0. By assumption, σ′2 is not empty, hence we can pick some t ∈
{j + 1, . . . ,m} \ {p} with bt > 0. If a′t = at − 1, then we put b′p = bp and b′i = bi − ai + a′i for i 6= p;
σ′ = σ∗ follows (observe that b′t = bt − 1). Otherwise, if a′t = at, then we put b′p = bp, b′t = bt − 1,
and b′i = bi − ai + a′i for i /∈ {p, t}; in this case σ′ arises from σ∗ by an elementary flattening
which decrements a′t. It follows that σ′ dominates σ∗ in any case, hence in turn, σ′ dominates σ
as claimed. ut

Repeated application of Lemma 4 yields the following result.

Corollary 1 Let Γ and Γ ′ be sets of stairways such that every element of Γ is dominated by some
element of Γ ′. If Γ `N(s) σ then σ is dominated by some σ′ such that Γ ′ `N(s) σ′. In particular,
Γ `N(s) ε implies Γ ′ `N(s) ε.

It would be interesting to know if there exists a more general notion of domination for which
Corollary 1 holds.

Now it is easy to see that f1 is computable: Assume that we want to decide whether f1(k) ≤ s.
First decide whether f1(k−1) ≤ s (we can inductively assume that this is possible); if f1(k−1) > s
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then clearly f1(k) > s and we are done. Otherwise, if f1(k− 1) ≤ s, let T be an N(s)-derivation of
ε from (k−1), and let n denote the number of leaves of T . By changing all axioms of T from (k−1)
to (k), and by propagating this modification downward in T , we obtain an N(s)-derivation of the
sequence 1n, a sequence consisting of n 1s. Since every sequence of length at least n is dominated
by 1n, we can ignore all sequences of length greater than n in the saturation algorithm. On the
other hand, all sequences containing an entry which is greater than k are dominated by (k); hence
it follows that there is a finite number (≤ (k + 1)n) of sequences that have to be considered by the
saturation algorithm. Hence it can be decided whether f1(k) ≤ s; thus f1 is computable.

Theorem 3 The function f1 is computable.

5 Restricting the Search Space

In this section we present further results which allow to speed up the computation of f1.

5.1 A Deterministic Rule of Inference

Let σ1 = (a1, . . . , aj), σ2 = (aj+1, . . . , an) be nonempty stairways, and let (a2, . . . , aj , aj+2, . . . , an)ord =
(b1, . . . , bn−2). For given s ≥ 2, we put s′ = min(s, n)− 2 and we define a stairway

σ1 ⊕s σ2 := (a1 − 1, aj − 1, b1 − 1, . . . , bs′ − 1, bs′+1, . . . , bn−2)ord

Thus, σ1 ⊕s σ2 arises from σ1σ2 by decrementing the s largest entries of σ1σ2, ensuring that at
least one entry of σ1 and at least one entry of σ2 is decremented.

Lemma 5 Let σ1, σ2 be stairways. Then σ1⊕s σ2 can be inferred from σ1 and σ2 by the rule N(s);
moreover, σ1⊕s σ2 dominates all other sequences which can be inferred from σ1 and σ2 by the rule
N(s).

Thus obtaining σ1⊕sσ2 from σ1, σ2 is a special case of an inference by the rule N(s). We denote
the corresponding restricted form of the rule by D(s).

Since every stairway is dominated by the empty sequence ε, Lemmas 4 and 5 immediately yield
the following result.

Theorem 4 f1(k) = min{ s : (k) `D(s) ε } − 1.

See Fig. 3 for a D(8)-derivation of ε from (5), displayed as a sequence of inference steps.

σ0 = (5)
σ1 = σ0 ⊕8 σ0 = (4, 4)
σ2 = σ0 ⊕8 σ1 = (4, 3, 3)
σ3 = σ0 ⊕8 σ2 = (4, 3, 2, 2)
σ4 = σ0 ⊕8 σ3 = (4, 3, 2, 1, 1)
σ5 = σ0 ⊕8 σ4 = (4, 3, 2, 1)
σ6 = σ5 ⊕8 σ5 = (3, 3, 2, 2, 1, 1)
σ7 = σ5 ⊕8 σ6 = (3, 2, 2, 2, 1, 1, 1, 1, 1)
σ8 = σ6 ⊕8 σ0 = (4, 2, 2, 1, 1)
σ9 = σ7 ⊕8 σ0 = (4, 2, 1, 1, 1, 1, 1)
σ10 = σ8 ⊕8 σ0 = (4, 3, 1, 1)
σ11 = σ8 ⊕8 σ10 = (3, 3, 2, 1, 1, 1)
σ12 = σ9 ⊕8 σ0 = (4, 3, 1)
σ13 = σ11 ⊕8 σ0 = (4, 2, 2, 1)
σ14 = σ12 ⊕8 σ13 = (3, 3, 2, 1, 1)
σ15 = σ12 ⊕8 σ14 = (3, 2, 2, 2, 1)

σ16 = σ12 ⊕8 σ15 = (3, 2, 2, 1, 1, 1)
σ17 = σ16 ⊕8 σ0 = (4, 2, 1, 1)
σ18 = σ17 ⊕8 σ17 = (3, 3, 1, 1)
σ19 = σ17 ⊕8 σ18 = (3, 2, 2, 1)
σ20 = σ17 ⊕8 σ19 = (3, 2, 1, 1, 1)
σ21 = σ20 ⊕8 σ0 = (4, 2, 1)
σ22 = σ20 ⊕8 σ21 = (3, 2, 1, 1)
σ23 = σ20 ⊕8 σ22 = (2, 2, 1, 1, 1)
σ24 = σ20 ⊕8 σ23 = (2, 1, 1, 1, 1, 1)
σ25 = σ24 ⊕8 σ0 = (4, 1)
σ26 = σ24 ⊕8 σ25 = (3, 1)
σ27 = σ24 ⊕8 σ26 = (2, 1)
σ28 = σ24 ⊕8 σ27 = (1, 1)
σ29 = σ24 ⊕8 σ28 = (1)
σ30 = σ29 ⊕8 σ29 = ε

Fig. 3. D(8)-derivation, certifying that f(5) ≤ f1(5) ≤ 7.
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5.2 Sequences of Length s − 1 are Enough

In the above argument for showing that f1 is computable (Theorem 3) we established an upper
bound for the maximum length of sequences we have to consider for deciding whether f1(k) ≤ s.
This upper bound is very large and is not of practical help for actually determining f1(k) for small
k. Next we present a construction which allows us to restrict the length of the sequences we have
to consider to s− 1.

Let s ≥ 1 and let σ = (a1, . . . , an) be a stairway of length n ≥ s. Consider the stairway

σ′ = (a1, . . . , as−2, as−1 + 1, as − 1, as+1, . . . , an)ord;

we say that σ′ is obtained from σ by elementary s-sloping. We can apply s-sloping to σ repeatedly,
until we end up with a sequence of length s − 1; we denote this sequence by σ|s, and for any
stairway σ of length < s, we put σ|s = σ.

The next result allows us for the saturation algorithm to apply s-sloping before we add a new
sequence to the cumulating set.

Theorem 5 Let Γ be a set of stairways and let Γ ′ := {σ|s : σ ∈ Γ }. Then Γ `D(s) ε if and only
if Γ ′ `D(s) ε.

Proof. (⇐) Since σ always dominates σ|t, this direction of the theorem follows directly from Corol-
lary 1.

(⇒) Consider a D(s)-derivation T of ε from Γ . For every leaf v of T we count the number k(v)
of times we have to apply s-sloping to the sequence σv labeling v to obtain σv|s. Let k(T ) denote
the sum of k(v) over all leaves of T . If k(T ) = 0 then T is already a D(s)-derivation of ε from Γ ′,
and we are done. Hence assume k(T ) > 0. Below we describe a construction which modifies T in
such a way that k(T ) is decreased; a repeated application of the construction yields to the case
k(T ) = 0.

We pick a leaf v0 of T which is is labeled by σ0 = (a1, . . . , an) for n ≥ s.
Let v0, . . . , vr be the sequence of vertices on the path P from v0 to the root vr of T . We

introduce now a notion which will allow us to talk precisely about what happens to the entries of
σ0 on the path P .

Consider an entry aj of σ0. Following the path P from v0 to vr, we can track the entry aj . At
each step of inference, it is either decremented or it retains its value, until its value reaches 0 (we can
always find its new position after sorting the sequence). We use this procedure to track a1, . . . , an

so that at vi their values are represented by the sequence Ai := (a(i)
1 , . . . , a

(i)
n ), i = 0, . . . , r. Using

the freedom in the choice of Ai, we can make sure that

a
(i)
1 ≥ · · · ≥ a

(i)
s−1 for i = 0, . . . , r. (4)

We call τ = (a(i)
1 , . . . , a

(i)
n )r

i=0 a trace of v0. Note that in general, v0 has several possible traces.
Since T is a D(s)-derivation, it follows that for any transition from Ai to Ai+1, if an entry of Ai

is decremented, all strictly larger elements of Ai are decremented as well; we refer to this property
of the trace as >-preference. For entries of Ai of equal value, we have some freedom in the choice
of the trace. We assume that if an entry a

(i)
t is decremented for t ≥ s, then all entries a

(i)
t′ = a

(i)
t

for t′ < s are decremented as well. We refer to this property of the trace as =-preference.
Let i0 ∈ {1, . . . , r − 1} be the smallest index such that a

(i0+1)
s = a

(i0)
s − 1 (such i0 exists, since

the root vr is labeled by the empty sequence, and so Ar = (0, . . . , 0)). At the transition from Ai0

to Ai0+1 at most s− 1 entries are decremented; by the pigeon hole principle it follows that at least
one a

(i0)
t , t < s, is not decremented. <-preference implies a

(i0)
t ≤ a

(i0)
s , and =-preference implies

a
(i0)
t < a

(i0)
s . In view of (4), we may assume that t = s− 1, therefore a

(i0)
s−1 < a

(i0)
s .

Now we modify the labels of the vertices vi, i = 0, . . . , i0, as follows. We can replace in σvi
the

entries a
(i)
s−1 and a

(i)
s by a

(i)
s−1 + 1 and a

(i)
s − 1, respectively (by assumption, a

(i)
s = as for i ≤ i0).

Let T ′ denote the new labeled tree. To show that T ′ is an N(s)-derivation, it suffices to justify the
labels of v0, . . . , vi0+1 by the rule N(s). This is easy for v0, . . . , vi0 . By assumption, the inference
that yields the label vi0+1 involves decrementing a

(i0)
s , (a(i0+1)

s = a
(i0)
s −1), but a

(i0)
s−1 is not changed
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(a(i0+1)
s−1 = a

(i0)
s−1). In T ′, we simply swap the roles of these two entries, and obtain the original label

of vi0+1. Hence T ′ is indeed an N(s)-derivation and, as we have applied elementary s-sloping to
the label of v0, k(T ′) = k(T )− 1.

In order to complete our inductive argument, we transform the N(s)-derivation T ′ into a
D(s)-derivation T ′′ such that k(T ′′) ≤ k(T ′). We apply Lemmas 4 and 5 along the path P . That
is, assume that vertex vi, 1 ≤ i ≤ r is labeled by a sequence λ, and that its parents vi−1 and v′i−1

are labeled by λ1 and λ2, respectively. If we change λ1 to some sequence λ′1 which dominates λ1,
then, in view of Lemmas 4 and 5, we can change λ to λ′ := λ′1 ⊕s λ2 (λ′ dominates λ). We apply
this re-labeling to v1, v2, . . . until we reach a vertex vr′ which receives the label ε. The subtree T ′′

rooted in vr′ is now a D(s)-derivation with k(T ′′) ≤ k(T ′) < k(T ) as claimed. Hence, by iteration,
we are finally left with a D(s)-derivation T ∗ with k(T ∗) = 0, which is a D(s)-derivation of ε from
Γ ′. This completes the proof of the theorem. ut

Appendix: A D(12)-Derivation, Certifying that f(6) ≤ f1(6) ≤ 11

σ0 = (6)
σ1 = σ0 ⊕12 σ0

σ2 = σ0 ⊕12 σ1

σ3 = σ0 ⊕12 σ2

σ4 = σ0 ⊕12 σ3

σ5 = σ0 ⊕12 σ4

σ6 = σ0 ⊕12 σ5

σ7 = σ1 ⊕12 σ1

σ8 = σ1 ⊕12 σ6

σ9 = σ1 ⊕12 σ8

σ10 = σ1 ⊕12 σ9

σ11 = σ1 ⊕12 σ10

σ12 = σ1 ⊕12 σ11

σ13 = σ2 ⊕12 σ12

σ14 = σ6 ⊕12 σ12

σ15 = σ6 ⊕12 σ13

σ16 = σ7 ⊕12 σ12

σ17 = σ7 ⊕12 σ13

σ18 = σ14 ⊕12 σ0

σ19 = σ15 ⊕12 σ0

σ20 = σ16 ⊕12 σ0

σ21 = σ17 ⊕12 σ0

σ22 = σ18 ⊕12 σ0

σ23 = σ18 ⊕12 σ1

σ24 = σ18 ⊕12 σ22

σ25 = σ19 ⊕12 σ0

σ26 = σ20 ⊕12 σ1

σ27 = σ21 ⊕12 σ0

σ28 = σ23 ⊕12 σ25

σ29 = σ23 ⊕12 σ28

σ30 = σ24 ⊕12 σ0

σ31 = σ25 ⊕12 σ27

σ32 = σ25 ⊕12 σ28

σ33 = σ25 ⊕12 σ32

σ34 = σ26 ⊕12 σ31

σ35 = σ27 ⊕12 σ31

σ36 = σ29 ⊕12 σ0

σ37 = σ30 ⊕12 σ34

σ38 = σ33 ⊕12 σ0

σ39 = σ35 ⊕12 σ35

σ40 = σ36 ⊕12 σ0

σ41 = σ37 ⊕12 σ0

σ42 = σ38 ⊕12 σ38

σ43 = σ38 ⊕12 σ40

σ44 = σ38 ⊕12 σ42

σ45 = σ39 ⊕12 σ0

σ46 = σ40 ⊕12 σ40

σ47 = σ40 ⊕12 σ43

σ48 = σ41 ⊕12 σ0

σ49 = σ42 ⊕12 σ46

σ50 = σ42 ⊕12 σ47

σ51 = σ42 ⊕12 σ48

σ52 = σ44 ⊕12 σ0

σ53 = σ45 ⊕12 σ0

σ54 = σ49 ⊕12 σ52

σ55 = σ50 ⊕12 σ0

σ56 = σ51 ⊕12 σ53

σ57 = σ51 ⊕12 σ56

σ58 = σ52 ⊕12 σ55

σ59 = σ52 ⊕12 σ58

σ60 = σ53 ⊕12 σ58

σ61 = σ53 ⊕12 σ59

σ62 = σ54 ⊕12 σ0

σ63 = σ55 ⊕12 σ55

σ64 = σ55 ⊕12 σ58

σ65 = σ57 ⊕12 σ0

σ66 = σ58 ⊕12 σ60

σ67 = σ60 ⊕12 σ62

σ68 = σ60 ⊕12 σ66

σ69 = σ61 ⊕12 σ67

σ70 = σ63 ⊕12 σ0

σ71 = σ64 ⊕12 σ0

σ72 = σ65 ⊕12 σ71

σ73 = σ66 ⊕12 σ71

σ74 = σ68 ⊕12 σ0

σ75 = σ69 ⊕12 σ0

σ76 = σ70 ⊕12 σ74

σ77 = σ72 ⊕12 σ76

σ78 = σ73 ⊕12 σ0

σ79 = σ75 ⊕12 σ75

σ80 = σ75 ⊕12 σ79

σ81 = σ75 ⊕12 σ80

σ82 = σ75 ⊕12 σ81

σ83 = σ77 ⊕12 σ80

σ84 = σ78 ⊕12 σ83

σ85 = σ79 ⊕12 σ79

σ86 = σ79 ⊕12 σ82

σ87 = σ79 ⊕12 σ86

σ88 = σ79 ⊕12 σ87

σ89 = σ80 ⊕12 σ88

σ90 = σ80 ⊕12 σ89

σ91 = σ84 ⊕12 σ0

σ92 = σ85 ⊕12 σ90

σ93 = σ85 ⊕12 σ92

σ94 = σ91 ⊕12 σ93

σ95 = σ91 ⊕12 σ94

σ96 = σ93 ⊕12 σ95

σ97 = σ93 ⊕12 σ96

σ98 = σ97 ⊕12 σ0

σ99 = σ97 ⊕12 σ98

σ100 = σ97 ⊕12 σ99

σ101 = σ97 ⊕12 σ100

σ102 = σ97 ⊕12 σ101

σ103 = σ102 ⊕12 σ102 = ε
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