Computing Unsatisfiable \boldsymbol{k}-SAT Instances with Few Occurrences per Variable^

Shlomo Hoory and Stefan Szeider
Department of Computer Science, University of Toronto, shlomoh, szeider@cs.toronto.edu

Abstract

SAT is the propositional satisfiability problem restricted to instances where each clause has exactly k distinct literals and every variable occurs at most s times. It is known that there exists an exponential function f such that for $s \leq f(k)$ all (k, s)-SAT instances are satisfiable, but $(k, f(k)+1)$-SAT is already NP-complete $(k \geq 3)$. Exact values of f are only known for $k=3$ and $k=4$, and it is open whether f is computable. We introduce a computable function f_{1} which bounds f from above and determine the values of f_{1} by means of a calculus of integer sequences. This new approach enables us to improve the best known upper bounds for $f(k)$, generalizing the known constructions for unsatisfiable (k, s)-SAT instances for small k.

1 Introduction

We consider CNF formulas represented as sets of clauses. Let k, s be fixed positive integers. We denote by (k, s)-CNF the set of formulas F where every clause of F has exactly k different literals and each variable occurs in at most s clauses of F. We denote the sets of satisfiable and unsatisfiable formulas by SAT and UNSAT, respectively.

It was observed by Tovey [1] that all formulas in (3,3)-CNF are satisfiable, and the satisfiability problem restricted to $(3,4)$-CNF is already NP-complete. This was generalized in Kratochvíl, et al. [2] where it is shown that for every $k \geq 3$ there is some integer $s=f(k)$ such that

1. all formulas in (k, s)-CNF are satisfiable, and
2. $(k, s+1)$-SAT, the SAT problem restricted to $(k, s+1)$-CNF, is already NP-complete.

The function f can be defined by the equation

$$
f(k):=\max \{s:(k, s)-\mathrm{CNF} \cap \mathrm{UNSAT}=\emptyset\}
$$

From 11 it follows that $f(3)=3$ and $f(k) \geq k$ for $k>3$.
Asymptotic upper and lower bounds for $f(k)$ have been obtained in 2|3/4. Since typical formulas arising in practice have clauses of small width, it is interesting to know the exact values of $f(k)$ for small k. However, it is not known whether f is computable.

Dubois [5] constructs unsatisfiable formulas in (4,6)-CNF and (5,11)-CNF, respectively, which implies $4 \leq f(4) \leq 5$ and $5 \leq f(5) \leq 10$. As reported in 3, Stříbrná shows in her M.Sc. thesis [6] that $(4,5)$-CNF contains unsatisfiable formulas, hence $f(4)=4$. More recently, Berman, et al. [7] construct unsatisfiable formulas belonging to the classes (3,4)-CNF, (4, 6)-CNF, (5, 9)-CNF, improving Dubois' upper bound for $f(5)$ to 8 .

The quoted constructions are quite involved. We present a new and simple technique for generating unsatisfiable (k, s)-CNF formulas. By this new technique we can improve on best known upper bounds for $f(k)$; Table 1 gives an overview of upper bounds for $f(k)$.

By means of a construction due to Kratochvíl, et al. [2], one can construct from any unsatisfiable (k, s)-CNF formula an unsatisfiable $(k+1,2 s)$-CNF formula; thus

$$
\begin{equation*}
f(k+1) \leq 2 f(k)+1 \tag{1}
\end{equation*}
$$

[^0]By generalization of a theorem by Savický and Sgall [3] one can derive the equation

$$
\begin{equation*}
f(3 k) \leq 3 \cdot 4^{k-1} f(k) \tag{2}
\end{equation*}
$$

which yields asymptotically better upper bounds for $f(k)$; for small k, however, (1) is preferable. The upper bounds for $f(k)$ obtained by (1) are still relatively large compared to upper bounds obtained by genuinely constructed formulas (see also Table 1).

	Tov[1]	Dub[5]	Stř[6]	BKS[7]	this paper
$3 \leq f(3) \leq$	3	3	3	3	3
$4 \leq f(4) \leq$	7^{*}	5	4	5	4
$5 \leq f(5) \leq$	15^{*}	10	9^{*}	8	7
$7 \leq f(6) \leq$	31^{*}	21^{*}	19^{*}	17^{*}	11
$13 \leq f(7) \leq$	63^{*}	43^{*}	39^{*}	35^{*}	17
$24 \leq f(8) \leq$	127^{*}	87^{*}	79^{*}	71^{*}	29
$41 \leq f(9) \leq$	255^{*}	175^{*}	159^{*}	143^{*}	51

Table 1. Best known lower and upper bounds of $f(k)$ for small k. Entries labeled by an asterisk are obtained via equation (1) from the preceding value of the respective paper. The lower bounds are taken from [7].

Our approach is to focus on a certain class $M U(1)$ of unsatisfiable formulas. Formulas in $M U(1)$ have a simple structure and can be constructed in a recursive way (see the next section). Therefore it is easier to search for unsatisfiable formulas in (k, s)-CNF $\cap \mathrm{MU}(1)$ than in (k, s)-CNF.

For $k \geq 3$ let $f_{1}(k)$ denote the largest integer such that (k, s)-CNF $\cap \mathrm{MU}(1)=\emptyset$. Since all formulas in $\mathrm{MU}(1)$ are unsatisfiable, always $f(k) \leq f_{1}(k)$ holds. Our examples below show that $f(k)=f_{1}(k)$ for $k=3,4$. It is interesting to know whether $f(k)=f_{1}(k)$ holds for $k \geq 5$.

By our new approach, the construction of unsatisfiable (k, s)-CNF formulas can be reduced to applying a certain operation to ordered integer sequences. Therefore, the construction can be easily automatized (a saturation algorithm is outlined below). The next theorem summarizes the results we have obtained so far by running a C ++ implementation of the saturation algorithm.

Theorem 1

The following classes contain unsatisfiable formulas: (3,4)-CNF, (4, 5)-CNF, (5, 8)-CNF, (6,12)-CNF, (7,18)-CNF, (8,30)-CNF. (9,52)-CNF. Hence, the satisfiability problem restricted to any of these classes is NP-complete.

The existence of unsatisfiable formulas in $(5,8)$-CNF and $(6,12)$-CNF is certified by the derivations given in Fig. 3 and the appendix, respectively. For the other classes mentioned in Theorem 1 , certificates can be found in a file archive, available at the authors' homepages.

2 The Class MU(1)

A CNF formula is minimal unsatisfiable if it is unsatisfiable and removing any of its clauses makes it satisfiable. We denote the class of minimal unsatisfiable CNF formulas by MU. Since every unsatisfiable formula F has a minimal unsatisfiable subset F^{\prime}, and since $F \in(k, s)$-CNF implies $F^{\prime} \in(k, s)$-CNF, we can restrict ourselves to the class MU. In other words,

$$
f(k)=\max \{s:(k, s)-\mathrm{CNF} \cap \mathrm{MU}=\emptyset\}
$$

The deficiency $\delta(F)$ of a formula with n variables and m clauses is defined as $\delta(F)=m-n$. It is known that formulas in MU have always positive deficiency [8] therefore it is natural to
parameterize MU by deficiency and to consider the classes $\mathrm{MU}(k):=\{F \in \mathrm{MU}: \delta(F)=k\}$ for $k \geq 1$.

Let us consider the function

$$
\begin{equation*}
f_{1}(k)=\max \{s:(k, s)-\mathrm{CNF} \cap \mathrm{MU}(1)=\emptyset\} . \tag{3}
\end{equation*}
$$

Evidently, we have $f_{1}(k) \geq f(k)$, and so any upper bound for $f_{1}(k)$ is also an upper bound for $f(k)$. In the sequel we will show that f_{1} is computable, and that for small k we can actually compute the exact value of $f_{1}(k)$.

Formulas in $\mathrm{MU}(1)$ have been widely studied (see, e.g., 89|0|11|2]). In particular, the following result of Davydov, et al. 9] (a proof is implicitly present in [8), shows that formulas in $\mathrm{MU}(1)$ can be recursively decomposed $(\operatorname{var}(F)$ denotes the set of variables which occur (positively or negatively) in the formula F).

Lemma 1 (Davydov, et al. [9]) $F \in \mathrm{MU}(1)$ if and only if either $F=\{\emptyset\}$ or F is the disjoint union of formulas $F_{1}^{\prime}, F_{2}^{\prime}$ such that for a variable x we have
$-\operatorname{var}\left(F_{1}^{\prime}\right) \cap \operatorname{var}\left(F_{2}^{\prime}\right)=\{x\}$ and $\{x, \bar{x}\} \subseteq \bigcup_{C \in F} C ;$
$-F_{1}:=\left\{C \backslash\{x\}: C \in F_{1}^{\prime}\right\} \in \operatorname{MU}(1) ;$
$-F_{2}:=\left\{C \backslash\{\bar{x}\}: C \in F_{2}^{\prime}\right\} \in \operatorname{MU}(1)$.
If F has a variable x with the properties stated in the above lemma, then following [11] we call the pair $\left(F_{1}, F_{2}\right)$ a disjunctive splitting of F in x. Furthermore we call the number of clauses of F in which x occurs the degree of the splitting $\left(F_{1}, F_{2}\right)$.

For example, the formula $F=\{\{x, z\},\{\bar{x}, y\},\{\bar{y}, z\},\{\bar{z}, w\},\{\bar{z}, \bar{w}\}\}$ belongs to $\mathrm{MU}(1)$ since it can be decomposed by disjunctive splittings as displayed in Fig. 1. Note that $F \in(2,4)$-CNF since all clauses have size 2 and every literal occurs at most 4 times. In general, if we decompose a formula F by splittings of degree $\leq s$, then evidently every variable of F occurs in at most s clauses. Hence we have the following lemma.

$$
\frac{\left.\frac{\{\emptyset\}}{\frac{\{\{x\},\{\bar{x}\}\}}{}(\text { split in } x)} \begin{array}{rl}
\{\{x\},\{\bar{x}, y\},\{\bar{y}\}\}) \\
& F=\{\{x, z\},\{\bar{x}, y\},\{\bar{y}, z\},\{\bar{z}, w\},\{\bar{z}, \bar{w}\}\}
\end{array} \text { split in } y\right) \frac{\{\emptyset\}}{\{\{w\},\{\bar{w}\}\}}}{} \text { (split in w) }
$$

Fig. 1. Decomposition of a formula $F \in M U(1)$ by disjunctive splittings.

Lemma 2 If all clauses of a nonempty formula F have size k, then $F \in(k, s)$-CNF $\cap \mathrm{MU}(1)$ if and only if F can be decomposed by disjunctive splittings of degree $\leq s$.

3 A Calculus of Integer Sequences

Let $\sigma=\left(a_{1}, \ldots, a_{n}\right)$ be a finite nonincreasing sequence of positive integers (a stairway, for short). That is, $a_{1} \geq \cdots \geq a_{n} \geq 1$. We call a_{i} an entry of σ, n the length of σ, and denote the empty sequence by ε. For a finite sequence of non-negative integers σ let $\sigma^{\text {ord }}$ denote the stairway obtained from σ by removing 0 's and by ordering the entries nonincreasingly.

For a fixed integer $s \geq 2$ we consider the (nondeterministic) binary rule $N(s)$ that allows to infer a stairway σ from stairways σ_{1}, σ_{2} as follows: For $i=1,2$ obtain σ_{i}^{\prime} from σ_{i} by decrementing $s_{i} \geq 1$ entries, $s_{1}+s_{2} \leq s$, and put $\sigma:=\left(\sigma_{1}^{\prime} \sigma_{2}^{\prime}\right)^{\text {ord }}$. An $N(s)$-derivation is a finite binary rooted tree T whose vertices are labeled by stairways such that if a vertex v labeled by σ has parents v_{1}, v_{2} labeled by σ_{1}, σ_{2}, respectively, then σ can be inferred from σ_{1}, σ_{2} by the rule $N(s)$. For a set of stairways Γ and a stairway σ we write $\Gamma \vdash_{N(s)} \sigma$ if there is an $N(s)$-derivation T whose root is

Fig. 2. An $N(4)$-derivation.
labeled by σ and whose leaves are labeled by sequences from Γ. In particular, we have $\Gamma \vdash_{N(s)} \sigma$ if $\sigma \in \Gamma$. If Γ is a singleton $\left\{\sigma^{\prime}\right\}$ we simply write $\sigma^{\prime} \vdash_{N(s)} \sigma$.

As an example, the $N(4)$-derivation displayed in Fig. 2 shows that $(3) \vdash_{N(4)}(1,1,1,1,1)$.
Let $F=\left\{C_{1}, \ldots, C_{m}\right\} \neq \emptyset$ be a formula with $0 \leq\left|C_{1}\right| \leq \cdots \leq\left|C_{m}\right| \leq k$, and let n be the largest integer in $\{1, \ldots, m\}$ with $\left|C_{n}\right|<k$. We associate with F the stairway

$$
\Sigma_{k}(F):=\left(k-\left|C_{1}\right|, \ldots, k-\left|C_{n}\right|\right)
$$

For dealing formally with the rule $N(s)$ in the proofs below, the following concept is convenient. Consider stairways $\sigma_{1}=\left(a_{1}, \ldots, a_{j}\right)$ and $\sigma_{2}=\left(a_{j+1}, \ldots, a_{m}\right)$. The definition of $N(s)$ says that a stairway σ can be inferred from σ_{1}, σ_{2} if and only if there is a set $I \subseteq\{1, \ldots, m\}$ with $I \cap\{1, \ldots, j\} \neq$ $\emptyset, I \cap\{j+1, \ldots, m\} \neq \emptyset$, and $|I| \leq s$ such that $\sigma=\left(a_{1}^{\prime}, \ldots, a_{m}^{\prime}\right)^{\text {ord }}$ where

$$
a_{i}^{\prime}= \begin{cases}a_{i}-1 & \text { if } i \in I \\ a_{i} & \text { otherwise }\end{cases}
$$

We call the set I an index set associated with the inference. Note that the index set I is not necessarily unique.

The next lemma, which can be shown by induction, asserts that $N(s)$-derivations and formulas in $\mathrm{MU}(1) \cap(k, s)$-CNF are closely related.

Lemma 3 For every stairway σ the following holds true. $(k) \vdash_{N(s)} \sigma$ if and only if there is a formula $F \in \mathrm{MU}(1)$ with $\Sigma_{k}(F)=\sigma$ which can be decomposed by disjunctive splittings of degree $\leq s$.

Proof. (\Rightarrow) Assume $(k) \vdash_{N(s)} \sigma$ and let T be an $N(s)$-derivation of σ from (k) with a minimal number n of inference steps (we count every non-leaf of T as an inference step). We proceed by induction on n. If $n=0$ then σ is the axiom (k) and we put $F=\{\emptyset\}$. Clearly $\Sigma_{k}(F)=(k)$ and we are done. Now assume $n \geq 1$, and let σ_{1}, σ_{2} be the stairways from which σ is inferred in T. Let $\sigma_{1}=\left(a_{1}, \ldots, a_{j}\right), \sigma_{2}=\left(a_{j+1}, \ldots, a_{m}\right)$, and $\sigma=\left(c_{1}, \ldots, c_{n}\right)$. Let $I \subseteq\{1, \ldots, m\}$ be an index set associated with the inference of σ from σ_{1}, σ_{2}, so that we can write $\sigma=\left(a_{1}^{\prime}, \ldots, a_{m}^{\prime}\right)^{\text {ord }}$.

By induction hypothesis (the subderivations of T ending in σ_{1} and σ_{2}, respectively, have less than n steps), there are formulas $F_{1}, F_{2} \in \operatorname{MU}(1)$ with $\Sigma_{k}\left(F_{i}\right)=\sigma_{i}$ such that F_{i} can be decomposed by disjunctive splittings of degree $\leq s$. We may assume that F_{1} and F_{2} do not share a variable (we can always rename variables). Let F_{i}^{\prime} be the subset of F_{i} containing all clauses of size $k, i=1,2$. Since $\Sigma_{k}\left(F_{i}\right)=\sigma_{i}$, we can write $F_{1}=\left\{C_{1}, \ldots, C_{j}\right\} \cup F_{1}^{\prime}$ and $F_{2}=\left\{C_{j+1}, \ldots, C_{m}\right\} \cup F_{2}^{\prime}$ such that $a_{i}=k-\left|C_{i}\right|$ for $i=1, \ldots, m$. We pick a new variable x and define $F:=\left\{D_{1}, \ldots, D_{m}\right\} \cup F_{1}^{\prime} \cup F_{2}^{\prime}$ where

$$
D_{i}= \begin{cases}C_{i} \cup\{x\} & \text { if } i \in I \text { and } i \leq j \\ C_{i} \cup\{\bar{x}\} & \text { if } i \in I \text { and } i>j \\ C_{i} & \text { otherwise }\end{cases}
$$

Consequently, $\left(F_{1}, F_{2}\right)$ is a disjunctive splitting of F of degree $\leq s$. Since $\Sigma_{k}(F)=\sigma$, the first part of the lemma is shown true.
(\Leftarrow) Let $F \in \operatorname{MU}(1), \Sigma_{k}(F)=\sigma$, be decomposable by disjunctive splittings of degree $\leq s$. We show by induction on the number n of variables of F that $(k) \vdash_{N(s)} \sigma$. If $n=0$ then $F=\{\emptyset\}$ and so $\sigma=(k)$; hence $(k) \vdash_{N(s)} \sigma$. Now assume $n>0$. By assumption, F has a disjunctive splitting $\left(F_{1}, F_{2}\right)$ of degree $\leq s$. Let $\sigma_{i}:=\Sigma_{k}\left(F_{i}\right), i=1,2$. Since $\left|\operatorname{var}\left(F_{i}\right)\right| \leq|\operatorname{var}(F)|-1$, it follows by
induction hypothesis that $(k) \vdash_{N(s)} \sigma_{i}, i=1,2$. It remains to show that σ can be inferred from σ_{1}, σ_{2} by the rule $N(s)$.

By definition of a disjunctive splitting, F is the disjoint union of formulas $F_{1}^{\prime}, F_{2}^{\prime}$ such that for a variable x the conditions stated in Lemma 1 are satisfied. Consequently, for some nonempty subsets $G_{i} \subseteq F_{i}, i=1,2$, we have

$$
\begin{aligned}
& F_{1}^{\prime}=\left\{C \cup\{x\}: C \in G_{1}\right\} \cup\left(F_{1} \backslash G_{1}\right), \\
& F_{2}^{\prime}=\left\{C \cup\{\bar{x}\}: C \in G_{2}\right\} \cup\left(F_{2} \backslash G_{2}\right)
\end{aligned}
$$

Since the splitting is of degree $\leq s,\left|G_{1}\right|+\left|G_{2}\right| \leq s$ follows. Every clause in $G_{1} \cup G_{2}$ corresponds bijectively to an entry a of σ_{i} which is decreased by one (thus either $a \geq 2$ and $a-1$ is an entry of σ, or $a=1$ and $a-1$ is omitted in σ). The other clauses $C \in F_{i} \backslash G_{i}$ with $|C|<k$ correspond bijectively to entries $a=k-|C|$ of σ_{i} which give rise to entries of σ. Thus σ can indeed be inferred from σ_{1}, σ_{2} by the rule $N(s)$ and so $(k) \vdash_{N(s)} \sigma$ follows.

Note that in general there are many different formulas corresponding to one $N(s)$-derivation in the sense of Lemma 3 .

For the example in Fig. 1, we have $F=\{\{x, z\},\{\bar{x}, y\},\{\bar{y}, z\},\{\bar{z}, w\},\{\bar{z}, \bar{w}\}\}$ and $\Sigma_{3}(F)=$ $(1,1,1,1,1)$. The disjunctive splitting of degree ≤ 4 depicted in Fig. 1 corresponds to the $N(4)$-derivation in Fig. 2 by means of Lemma 3 .

An immediate consequence of Lemma 3 is the following characterization of the function f_{1} defined in (3). Recall that ε denotes the empty sequence.

Theorem $2 f_{1}(k)=\min \left\{s:(k) \vdash_{N(s)} \varepsilon\right\}-1$.
Proof. Let $s \geq 2$ such that $(k) \vdash_{N(s)} \varepsilon$. By Lemma3, there exists a formula $F \in \operatorname{MU}(1), \Sigma_{k}(F)=\varepsilon$, which can be decomposed by splittings of degree $\leq s$. Thus variables of F occur in at most s clauses. Moreover, $\Sigma_{k}(F)=\varepsilon$ implies that all clauses of F have size k, thus $F \in(k, s)$-CNF follows. Consequently $f_{1}(k) \leq s-1$.

Now assume $f_{1}(k) \geq s$; i.e., (k, s)-CNF $\cap \mathrm{MU}(1)=\emptyset$. Consequently, no $F \in \mathrm{MU}(1)$ with $\Sigma_{k}(F)=\varepsilon$ can be decomposed by splittings of degree $\leq s$. By Lemma 3, it follows that $(k) \vdash_{N(s)} \varepsilon$ does not hold. Hence the theorem is shown true.

4 Computing f_{1}

The results of the previous section suggest the following saturation algorithm for determining whether $f_{1}(k) \leq s$ for given k, s :

- Start with the set $\mathcal{S}_{0}=\{(k)\}$.
- For $i>0$, obtain \mathcal{S}_{i} as the union of \mathcal{S}_{i-1} and the set of all sequences σ which can be inferred from $\sigma_{1}, \sigma_{2} \in \mathcal{S}_{i-1}$ by the rule $N(s)$.

If we reach a set \mathcal{S}_{i} which contains the empty sequence ε then we stop, as we then know that $f_{1}(k)<s$. Otherwise, if we reach a fixed-point i where $\mathcal{S}_{i}=\mathcal{S}_{i-1}$, then we know $f_{1}(k) \geq s$. We will show below that a refined saturation algorithm actually terminates, hence that a finite procedure for determining $f_{1}(k)$ exists.

When we run the saturation algorithm, it is desirable to avoid the derivation of sequences which are "worse" than other already derived sequences. For example, if we have already derived $(3,2,1)$, it is certainly superfluous to add the sequence $(3,3,1)$ or the sequence $(3,2,1,1)$ to the cumulating set. We will see below that also, say, $(3,3)$ can be ignored if we already have obtained $(3,2,1)$. Formally, we base the comparison of sequences on the following definition.

Let σ, σ^{\prime} be stairways. We say that σ^{\prime} is obtained from $\sigma=\left(a_{1}, \ldots, a_{n}\right)$ by elementary flattening if one of the following prevails:

1. For some $p \in\{1, \ldots, n\}$ we have $\sigma^{\prime}=\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)^{\text {ord }}$ where

$$
a_{i}^{\prime}= \begin{cases}a_{i}-1 & \text { if } i=p \\ a_{i} & \text { otherwise }\end{cases}
$$

2. Consider σ to have an additional entry a_{n+1} with value 0 . For some $p, q \in\{1, \ldots, n+1\}$ with $a_{p}>a_{q}$ we have $\sigma=\left(a_{1}^{\prime}, \ldots, a_{n+1}^{\prime}\right)^{\text {ord }}$ where

$$
a_{i}^{\prime}= \begin{cases}a_{i}-1 & \text { if } i=p \\ a_{i}+1 & \text { if } i=q \\ a_{i} & \text { otherwise }\end{cases}
$$

We exclude the case $a_{p}=a_{q}+1$ to ensure $\sigma \neq \sigma^{\prime}$.
That is, σ^{\prime} is obtained by decrementing some entry a_{p} and possibly incrementing some smaller entry a_{q}. We say that σ^{\prime} dominates σ if either $\sigma^{\prime}=\sigma$ or σ^{\prime} can be obtained from σ by multiple applications of elementary flattening.

The next lemma states that if σ is dominated by σ^{\prime}, then σ is "worse" than σ^{\prime} in the above sense.

Lemma 4 If σ can be inferred from σ_{1}, σ_{2} by rule $N(s)$, and if σ_{i} is dominated by $\sigma_{i}^{\prime} \neq \varepsilon, i=1,2$, then σ is dominated by some σ^{\prime} which can be inferred from $\sigma_{1}^{\prime}, \sigma_{2}^{\prime}$ by rule $N(s)$.

Proof. Since σ_{i} is dominated by $\sigma_{i}^{\prime}, \sigma_{i}^{\prime}$ can be obtained from σ_{i} by r_{i} applications of elementary flattening for some $r_{i} \geq 0$; in symbols, $\sigma_{i} \xrightarrow{r_{i}} \sigma_{i}^{\prime}$. We proceed by induction on $r=r_{1}+r_{2}$. If $r=0$ then $\sigma_{1}=\sigma_{1}^{\prime}, \sigma_{2}=\sigma_{2}^{\prime}$, and we put $\sigma^{\prime}=\sigma$.

Now assume $r>0$. W.l.o.g., we may assume that $r_{2}>0$. Hence there is a stairway σ_{2}^{*} such that

$$
\sigma_{2} \xrightarrow{r_{2}-1} \sigma_{2}^{*} \xrightarrow{1} \sigma_{2}^{\prime}
$$

The induction hypothesis yields that there is a stairway σ^{*} which dominates σ and can be obtained from $\sigma_{1}^{\prime}, \sigma_{2}^{*}$ by the rule $N(s)$. We have to show that there exists a stairway σ^{\prime} which can be obtained from $\sigma_{1}^{\prime}, \sigma_{2}^{\prime}$ by rule $N(s)$ and which dominates σ^{*}; i.e., that the diagram

$$
\begin{array}{cl}
\sigma_{1}^{\prime} \sigma_{2}^{*} \xrightarrow{1} & \sigma_{1}^{\prime} \sigma_{2}^{\prime} \\
\quad \downarrow N(s) & \\
\sigma^{*} \xrightarrow{\leq 1} & \sigma^{\prime}
\end{array}
$$

commutes. Let $\sigma_{1}^{\prime}=\left(a_{1}, \ldots, a_{j}\right), \sigma_{2}^{*}=\left(a_{j+1}, \ldots, a_{m}\right), \sigma^{*}=\left(a_{1}^{\prime}, \ldots, a_{m}^{\prime}\right)^{\text {ord }}, a_{m+1}:=0$. Furthermore, let b_{1}, \ldots, b_{m+1} be integers such that $\sigma_{1}^{\prime} \sigma_{2}^{\prime}=\left(b_{1}, \ldots, b_{m+1}\right)^{\text {ord }}$ where $a_{i}=b_{i}$ except $b_{p}=a_{p}-1$ and possibly $b_{q}=a_{q}+1$ for $a_{p}>a_{q}+1, j \leq p<q \leq m+1$. We put $\sigma^{\prime}=\left(b_{1}^{\prime}, \ldots, b_{m+1}^{\prime}\right)^{\text {ord }}$ and define b_{i}^{\prime} in the following case distinction.

First assume $b_{p}>0$ or $a_{p}=a_{p}^{\prime}$. We put $b_{i}^{\prime}=b_{i}-a_{i}+a_{i}^{\prime}$. It follows that σ^{\prime} can be obtained from σ^{*} by one elementary flattening, thus σ^{\prime} dominates σ^{*}.

Now assume that $0=b_{p}=a_{p}-1=a_{p}^{\prime}$. It follows that no entry a_{q} is incremented, since otherwise we would have $a_{q}<0$. By assumption, σ_{2}^{\prime} is not empty, hence we can pick some $t \in$ $\{j+1, \ldots, m\} \backslash\{p\}$ with $b_{t}>0$. If $a_{t}^{\prime}=a_{t}-1$, then we put $b_{p}^{\prime}=b_{p}$ and $b_{i}^{\prime}=b_{i}-a_{i}+a_{i}^{\prime}$ for $i \neq p ;$ $\sigma^{\prime}=\sigma^{*}$ follows (observe that $b_{t}^{\prime}=b_{t}-1$). Otherwise, if $a_{t}^{\prime}=a_{t}$, then we put $b_{p}^{\prime}=b_{p}, b_{t}^{\prime}=b_{t}-1$, and $b_{i}^{\prime}=b_{i}-a_{i}+a_{i}^{\prime}$ for $i \notin\{p, t\}$; in this case σ^{\prime} arises from σ^{*} by an elementary flattening which decrements a_{t}^{\prime}. It follows that σ^{\prime} dominates σ^{*} in any case, hence in turn, σ^{\prime} dominates σ as claimed.

Repeated application of Lemma 4 yields the following result.
Corollary 1 Let Γ and Γ^{\prime} be sets of stairways such that every element of Γ is dominated by some element of Γ^{\prime}. If $\Gamma \vdash_{N(s)} \sigma$ then σ is dominated by some σ^{\prime} such that $\Gamma^{\prime} \vdash_{N(s)} \sigma^{\prime}$. In particular, $\Gamma \vdash_{N(s)} \varepsilon$ implies $\Gamma^{\prime} \vdash_{N(s)} \varepsilon$.

It would be interesting to know if there exists a more general notion of domination for which Corollary 1 holds.

Now it is easy to see that f_{1} is computable: Assume that we want to decide whether $f_{1}(k) \leq s$. First decide whether $f_{1}(k-1) \leq s$ (we can inductively assume that this is possible); if $f_{1}(k-1)>s$
then clearly $f_{1}(k)>s$ and we are done. Otherwise, if $f_{1}(k-1) \leq s$, let T be an $N(s)$-derivation of ε from $(k-1)$, and let n denote the number of leaves of T. By changing all axioms of T from $(k-1)$ to (k), and by propagating this modification downward in T, we obtain an $N(s)$-derivation of the sequence 1^{n}, a sequence consisting of $n 1$ s. Since every sequence of length at least n is dominated by 1^{n}, we can ignore all sequences of length greater than n in the saturation algorithm. On the other hand, all sequences containing an entry which is greater than k are dominated by (k); hence it follows that there is a finite number $\left(\leq(k+1)^{n}\right)$ of sequences that have to be considered by the saturation algorithm. Hence it can be decided whether $f_{1}(k) \leq s$; thus f_{1} is computable.

Theorem 3 The function f_{1} is computable.

5 Restricting the Search Space

In this section we present further results which allow to speed up the computation of f_{1}.

5.1 A Deterministic Rule of Inference

Let $\sigma_{1}=\left(a_{1}, \ldots, a_{j}\right), \sigma_{2}=\left(a_{j+1}, \ldots, a_{n}\right)$ be nonempty stairways, and let $\left(a_{2}, \ldots, a_{j}, a_{j+2}, \ldots, a_{n}\right)^{\text {ord }}=$ $\left(b_{1}, \ldots, b_{n-2}\right)$. For given $s \geq 2$, we put $s^{\prime}=\min (s, n)-2$ and we define a stairway

$$
\sigma_{1} \oplus_{s} \sigma_{2}:=\left(a_{1}-1, a_{j}-1, b_{1}-1, \ldots, b_{s^{\prime}}-1, b_{s^{\prime}+1}, \ldots, b_{n-2}\right)^{\text {ord }}
$$

Thus, $\sigma_{1} \oplus_{s} \sigma_{2}$ arises from $\sigma_{1} \sigma_{2}$ by decrementing the s largest entries of $\sigma_{1} \sigma_{2}$, ensuring that at least one entry of σ_{1} and at least one entry of σ_{2} is decremented.

Lemma 5 Let σ_{1}, σ_{2} be stairways. Then $\sigma_{1} \oplus_{s} \sigma_{2}$ can be inferred from σ_{1} and σ_{2} by the rule $N(s)$; moreover, $\sigma_{1} \oplus_{s} \sigma_{2}$ dominates all other sequences which can be inferred from σ_{1} and σ_{2} by the rule $N(s)$.

Thus obtaining $\sigma_{1} \oplus_{s} \sigma_{2}$ from σ_{1}, σ_{2} is a special case of an inference by the rule $N(s)$. We denote the corresponding restricted form of the rule by $D(s)$.

Since every stairway is dominated by the empty sequence ε, Lemmas 4 and 5 immediately yield the following result.

Theorem $4 f_{1}(k)=\min \left\{s:(k) \vdash_{D(s)} \varepsilon\right\}-1$.
See Fig. 3 for a $D(8)$-derivation of ε from (5), displayed as a sequence of inference steps.

$$
\begin{array}{ll}
\sigma_{0}=(5) & \\
\sigma_{1}=\sigma_{0} \oplus_{8} \sigma_{0}=(4,4) & \sigma_{16}=\sigma_{12} \oplus_{8} \sigma_{15}=(3,2,2,1,1,1) \\
\sigma_{2}=\sigma_{0} \oplus_{8} \sigma_{1}=(4,3,3) & \sigma_{17}=\sigma_{16} \oplus_{8} \sigma_{0}=(4,2,1,1) \\
\sigma_{3}=\sigma_{0} \oplus_{8} \sigma_{2}=(4,3,2,2) & \sigma_{18}=\sigma_{17} \oplus_{8} \sigma_{17}=(3,3,1,1) \\
\sigma_{4}=\sigma_{0} \oplus_{8} \sigma_{3}=(4,3,2,1,1) & \sigma_{19}=\sigma_{17} \oplus_{8} \sigma_{18}=(3,2,2,1) \\
\sigma_{5}=\sigma_{0} \oplus_{8} \sigma_{4}=(4,3,2,1) & \sigma_{20}=\sigma_{17} \oplus_{8} \sigma_{19}=(3,2,1,1,1) \\
\sigma_{6}=\sigma_{5} \oplus_{8} \sigma_{5}=(3,3,2,2,1,1) & \sigma_{21}=\sigma_{20} \oplus_{8} \sigma_{0}=(4,2,1) \\
\sigma_{7}=\sigma_{5} \oplus_{8} \sigma_{6}=(3,2,2,2,1,1,1,1,1) & \sigma_{22}=\sigma_{20} \oplus_{8} \sigma_{21}=(3,2,1,1) \\
\sigma_{8}=\sigma_{6} \oplus_{8} \sigma_{0}=(4,2,2,1,1) & \sigma_{23}=\sigma_{20} \oplus_{8} \sigma_{22}=(2,2,1,1,1) \\
\sigma_{9}=\sigma_{7} \oplus_{8} \sigma_{0}=(4,2,1,1,1,1,1) & \sigma_{24}=\sigma_{20} \oplus_{8} \sigma_{23}=(2,1,1,1,1,1) \\
\sigma_{10}=\sigma_{8} \oplus_{8} \sigma_{0}=(4,3,1,1) & \sigma_{25}=\sigma_{24} \oplus_{8} \sigma_{0}=(4,1) \\
\sigma_{11}=\sigma_{8} \oplus_{8} \sigma_{10}=(3,3,2,1,1,1) & \sigma_{26}=\sigma_{24} \oplus_{8} \sigma_{25}=(3,1) \\
\sigma_{12}=\sigma_{9} \oplus_{8} \sigma_{0}=(4,3,1) & \sigma_{27}=\sigma_{24} \oplus_{8} \sigma_{26}=(2,1) \\
\sigma_{13}=\sigma_{11} \oplus_{8} \sigma_{0}=(4,2,2,1) & \sigma_{28}=\sigma_{24} \oplus_{8} \sigma_{27}=(1,1) \\
\sigma_{14}=\sigma_{12} \oplus_{8} \sigma_{13}=(3,3,2,1,1) & \sigma_{29}=\sigma_{24} \oplus_{8} \sigma_{28}=(1) \\
\sigma_{15}=\sigma_{12} \oplus_{8} \sigma_{14}=(3,2,2,2,1) & \sigma_{30}=\sigma_{29} \oplus_{8} \sigma_{29}=\varepsilon
\end{array}
$$

Fig. 3. $D(8)$-derivation, certifying that $f(5) \leq f_{1}(5) \leq 7$.

5.2 Sequences of Length $s-1$ are Enough

In the above argument for showing that f_{1} is computable (Theorem 3) we established an upper bound for the maximum length of sequences we have to consider for deciding whether $f_{1}(k) \leq s$. This upper bound is very large and is not of practical help for actually determining $f_{1}(k)$ for small k. Next we present a construction which allows us to restrict the length of the sequences we have to consider to $s-1$.

Let $s \geq 1$ and let $\sigma=\left(a_{1}, \ldots, a_{n}\right)$ be a stairway of length $n \geq s$. Consider the stairway

$$
\sigma^{\prime}=\left(a_{1}, \ldots, a_{s-2}, a_{s-1}+1, a_{s}-1, a_{s+1}, \ldots, a_{n}\right)^{\mathrm{ord}}
$$

we say that σ^{\prime} is obtained from σ by elementary s-sloping. We can apply s-sloping to σ repeatedly, until we end up with a sequence of length $s-1$; we denote this sequence by $\left.\sigma\right|^{s}$, and for any stairway σ of length $<s$, we put $\left.\sigma\right|^{s}=\sigma$.

The next result allows us for the saturation algorithm to apply s-sloping before we add a new sequence to the cumulating set.

Theorem 5 Let Γ be a set of stairways and let $\Gamma^{\prime}:=\left\{\left.\sigma\right|^{s}: \sigma \in \Gamma\right\}$. Then $\Gamma \vdash_{D(s)} \varepsilon$ if and only if $\Gamma^{\prime} \vdash_{D(s)} \varepsilon$.

Proof. (\Leftarrow) Since σ always dominates $\left.\sigma\right|^{t}$, this direction of the theorem follows directly from Corollary 1.
(\Rightarrow) Consider a $D(s)$-derivation T of ε from Γ. For every leaf v of T we count the number $k(v)$ of times we have to apply s-sloping to the sequence σ_{v} labeling v to obtain $\left.\sigma_{v}\right|^{s}$. Let $k(T)$ denote the sum of $k(v)$ over all leaves of T. If $k(T)=0$ then T is already a $D(s)$-derivation of ε from Γ^{\prime}, and we are done. Hence assume $k(T)>0$. Below we describe a construction which modifies T in such a way that $k(T)$ is decreased; a repeated application of the construction yields to the case $k(T)=0$.

We pick a leaf v_{0} of T which is is labeled by $\sigma_{0}=\left(a_{1}, \ldots, a_{n}\right)$ for $n \geq s$.
Let v_{0}, \ldots, v_{r} be the sequence of vertices on the path P from v_{0} to the root v_{r} of T. We introduce now a notion which will allow us to talk precisely about what happens to the entries of σ_{0} on the path P.

Consider an entry a_{j} of σ_{0}. Following the path P from v_{0} to v_{r}, we can track the entry a_{j}. At each step of inference, it is either decremented or it retains its value, until its value reaches 0 (we can always find its new position after sorting the sequence). We use this procedure to track a_{1}, \ldots, a_{n} so that at v_{i} their values are represented by the sequence $A_{i}:=\left(a_{1}^{(i)}, \ldots, a_{n}^{(i)}\right), i=0, \ldots, r$. Using the freedom in the choice of A_{i}, we can make sure that

$$
\begin{equation*}
a_{1}^{(i)} \geq \cdots \geq a_{s-1}^{(i)} \quad \text { for } i=0, \ldots, r \tag{4}
\end{equation*}
$$

We call $\tau=\left(a_{1}^{(i)}, \ldots, a_{n}^{(i)}\right)_{i=0}^{r}$ a trace of v_{0}. Note that in general, v_{0} has several possible traces. Since T is a $D(s)$-derivation, it follows that for any transition from A^{i} to A^{i+1}, if an entry of A^{i} is decremented, all strictly larger elements of A^{i} are decremented as well; we refer to this property of the trace as >-preference. For entries of A^{i} of equal value, we have some freedom in the choice of the trace. We assume that if an entry $a_{t}^{(i)}$ is decremented for $t \geq s$, then all entries $a_{t^{\prime}}^{(i)}=a_{t}^{(i)}$ for $t^{\prime}<s$ are decremented as well. We refer to this property of the trace as $=$-preference.

Let $i_{0} \in\{1, \ldots, r-1\}$ be the smallest index such that $a_{s}^{\left(i_{0}+1\right)}=a_{s}^{\left(i_{0}\right)}-1$ (such i_{0} exists, since the root v_{r} is labeled by the empty sequence, and so $A_{r}=(0, \ldots, 0)$). At the transition from $A_{i_{0}}$ to $A_{i_{0}+1}$ at most $s-1$ entries are decremented; by the pigeon hole principle it follows that at least one $a_{t}^{\left(i_{0}\right)}, t<s$, is not decremented. <-preference implies $a_{t}^{\left(i_{0}\right)} \leq a_{s}^{\left(i_{0}\right)}$, and $=$-preference implies $a_{t}^{\left(i_{0}\right)}<a_{s}^{\left(i_{0}\right)}$. In view of 4), we may assume that $t=s-1$, therefore $a_{s-1}^{\left(i_{0}\right)}<a_{s}^{\left(i_{0}\right)}$.

Now we modify the labels of the vertices $v_{i}, i=0, \ldots, i_{0}$, as follows. We can replace in $\sigma_{v_{i}}$ the entries $a_{s-1}^{(i)}$ and $a_{s}^{(i)}$ by $a_{s-1}^{(i)}+1$ and $a_{s}^{(i)}-1$, respectively (by assumption, $a_{s}^{(i)}=a_{s}$ for $i \leq i_{0}$). Let T^{\prime} denote the new labeled tree. To show that T^{\prime} is an $N(s)$-derivation, it suffices to justify the labels of $v_{0}, \ldots, v_{i_{0}+1}$ by the rule $N(s)$. This is easy for $v_{0}, \ldots, v_{i_{0}}$. By assumption, the inference that yields the label $v_{i_{0}+1}$ involves decrementing $a_{s}^{\left(i_{0}\right)},\left(a_{s}^{\left(i_{0}+1\right)}=a_{s}^{\left(i_{0}\right)}-1\right)$, but $a_{s-1}^{\left(i_{0}\right)}$ is not changed
$\left(a_{s-1}^{\left(i_{0}+1\right)}=a_{s-1}^{\left(i_{0}\right)}\right)$. In T^{\prime}, we simply swap the roles of these two entries, and obtain the original label of $v_{i_{0}+1}$. Hence T^{\prime} is indeed an $N(s)$-derivation and, as we have applied elementary s-sloping to the label of $v_{0}, k\left(T^{\prime}\right)=k(T)-1$.

In order to complete our inductive argument, we transform the $N(s)$-derivation T^{\prime} into a $D(s)$-derivation $T^{\prime \prime}$ such that $k\left(T^{\prime \prime}\right) \leq k\left(T^{\prime}\right)$. We apply Lemmas 4 and 5 along the path P. That is, assume that vertex $v_{i}, 1 \leq i \leq r$ is labeled by a sequence λ, and that its parents v_{i-1} and v_{i-1}^{\prime} are labeled by λ_{1} and λ_{2}, respectively. If we change λ_{1} to some sequence λ_{1}^{\prime} which dominates λ_{1}, then, in view of Lemmas 4 and 5, we can change λ to $\lambda^{\prime}:=\lambda_{1}^{\prime} \oplus_{s} \lambda_{2}$ (λ^{\prime} dominates λ). We apply this re-labeling to v_{1}, v_{2}, \ldots until we reach a vertex $v_{r^{\prime}}$ which receives the label ε. The subtree $T^{\prime \prime}$ rooted in $v_{r^{\prime}}$ is now a $D(s)$-derivation with $k\left(T^{\prime \prime}\right) \leq k\left(T^{\prime}\right)<k(T)$ as claimed. Hence, by iteration, we are finally left with a $D(s)$-derivation T^{*} with $k\left(T^{*}\right)=0$, which is a $D(s)$-derivation of ε from Γ^{\prime}. This completes the proof of the theorem.

Appendix: A $D(12)$-Derivation, Certifying that $f(6) \leq f_{1}(6) \leq 11$

$\sigma_{0}=(6)$	$\sigma_{35}=\sigma_{27} \oplus_{12} \sigma_{31}$	$\sigma_{70}=\sigma_{63} \oplus_{12} \sigma_{0}$
$\sigma_{1}=\sigma_{0} \oplus_{12} \sigma_{0}$	$\sigma_{36}=\sigma_{29} \oplus_{12} \sigma_{0}$	$\sigma_{71}=\sigma_{64} \oplus_{12} \sigma_{0}$
$\sigma_{2}=\sigma_{0} \oplus_{12} \sigma_{1}$	$\sigma_{37}=\sigma_{30} \oplus_{12} \sigma_{34}$	$\sigma_{72}=\sigma_{65} \oplus_{12} \sigma_{71}$
$\sigma_{3}=\sigma_{0} \oplus_{12} \sigma_{2}$	$\sigma_{38}=\sigma_{33} \oplus_{12} \sigma_{0}$	$\sigma_{73}=\sigma_{66} \oplus_{12} \sigma_{71}$
$\sigma_{4}=\sigma_{0} \oplus_{12} \sigma_{3}$	$\sigma_{39}=\sigma_{35} \oplus_{12} \sigma_{35}$	$\sigma_{74}=\sigma_{68} \oplus_{12} \sigma_{0}$
$\sigma_{5}=\sigma_{0} \oplus_{12} \sigma_{4}$	$\sigma_{40}=\sigma_{36} \oplus_{12} \sigma_{0}$	$\sigma_{75}=\sigma_{69} \oplus_{12} \sigma_{0}$
$\sigma_{6}=\sigma_{0} \oplus_{12} \sigma_{5}$	$\sigma_{41}=\sigma_{37} \oplus_{12} \sigma_{0}$	$\sigma_{76}=\sigma_{70} \oplus_{12} \sigma_{74}$
$\sigma_{7}=\sigma_{1} \oplus_{12} \sigma_{1}$	$\sigma_{43}=\sigma_{38} \oplus_{12} \sigma_{40}$	$\sigma_{77}=\sigma_{72} \oplus_{12} \sigma_{76}$
$\sigma_{8}=\sigma_{1} \oplus_{12} \sigma_{6}$	$\sigma_{44}=\sigma_{38} \oplus_{12} \sigma_{42}$	$\sigma_{79}=\sigma_{73} \oplus_{12} \sigma_{0}$
$\sigma_{9}=\sigma_{1} \oplus_{12} \sigma_{8}$	$\sigma_{45}=\sigma_{39} \oplus_{12} \sigma_{0}$	$\sigma_{80}=\sigma_{75} \oplus_{12} \sigma_{79}$
$\sigma_{10}=\sigma_{1} \oplus_{12} \sigma_{9}$	$\sigma_{46}=\sigma_{40} \oplus_{12} \sigma_{40}$	$\sigma_{81}=\sigma_{75} \oplus_{12} \sigma_{80}$
$\sigma_{11}=\sigma_{1} \oplus_{12} \sigma_{10}$	$\sigma_{47}=\sigma_{40} \oplus_{12} \sigma_{43}$	$\sigma_{82}=\sigma_{75} \oplus_{12} \sigma_{81}$
$\sigma_{12}=\sigma_{1} \oplus_{12} \sigma_{11}$	$\sigma_{48}=\sigma_{41} \oplus_{12} \sigma_{0}$	$\sigma_{83}=\sigma_{77} \oplus_{12} \sigma_{80}$
$\sigma_{13}=\sigma_{2} \oplus_{12} \sigma_{12}$	$\sigma_{69}=\sigma_{42} \oplus_{12} \sigma_{46}$	$\sigma_{84}=\sigma_{78} \oplus_{12} \sigma_{83}$
$\sigma_{14}=\sigma_{6} \oplus_{12} \sigma_{12}$	$\sigma_{50}=\sigma_{42} \oplus_{12} \sigma_{47}$	$\sigma_{85}=\sigma_{79} \oplus_{12} \sigma_{79}$
$\sigma_{15}=\sigma_{6} \oplus_{12} \sigma_{13}$	$\sigma_{51}=\sigma_{42} \oplus_{12} \sigma_{48}$	$\sigma_{86}=\sigma_{79} \oplus_{12} \sigma_{82}$
$\sigma_{16}=\sigma_{7} \oplus_{12} \sigma_{12}$	$\sigma_{52}=\sigma_{44} \oplus_{12} \sigma_{0}$	$\sigma_{87}=\sigma_{79} \oplus_{12} \sigma_{86}$
$\sigma_{17}=\sigma_{7} \oplus_{12} \sigma_{13}$	$\sigma_{53}=\sigma_{45} \oplus_{12} \sigma_{0}$	$\sigma_{88}=\sigma_{79} \oplus_{12} \sigma_{87}$
$\sigma_{18}=\sigma_{14} \oplus_{12} \sigma_{0}$	σ_{64}	$\sigma_{54}=\sigma_{49} \oplus_{12} \sigma_{52}$

References

1. Tovey, C.A.: A simplified NP-complete satisfiability problem. Discr. Appl. Math. 8 (1984) 85-89
2. Kratochvíl, J., Savický, P., Tuza, Z.: One more occurrence of variables make satisfiability jump from trivial to NP-complete. Acta Informatica 30 (1993) 397-403
3. Savický, P., Sgall, J.: DNF tautologies with a limited number of occurrences of every variable. Theoret. Comput. Sci. 238 (2000) 495-498
4. Hoory, S., Szeider, S.: Families of unsatisfiable k-CNF formulas with few occurrences per variable. (In preparation)
5. Dubois, O.: On the r, s-SAT satisfiability problem and a conjecture of Tovey. Discr. Appl. Math. 26 (1990) 51-60
6. Stříbrná, J.: Between combinatorics and formal logic. Master's thesis, Charles University, Prague (1994)
7. Berman, P., Karpinski, M., Scott, A.D.: Approximation hardness and satisfiability of bounded occurrence instances of SAT. Technical Report TR03-022, Electronic Colloquium on Computational Complexity (ECCC) (2003)
8. Aharoni, R., Linial, N.: Minimal non-two-colorable hypergraphs and minimal unsatisfiable formulas. J. Combin. Theory Ser. A 43 (1986) 196-204
9. Davydov, G., Davydova, I., Kleine Büning, H.: An efficient algorithm for the minimal unsatisfiability problem for a subclass of CNF. Ann. Math. Artif. Intell. 23 (1998) 229-245
10. Kullmann, O.: An application of matroid theory to the SAT problem. In: Fifteenth Annual IEEE Conference on Computational Complexity. (2000) 116-124
11. Kleine Büning, H., Zhao, X.: On the structure of some classes of minimal unsatisfiable formulas. Discr. Appl. Math. 130 (2003) 185-207
12. Szeider, S.: Homomorphisms of conjunctive normal forms. Discr. Appl. Math. 130 (2003) 351-365

[^0]: * Accepted as a full paper for the Seventh International Conference on Theory and Applications of Satisfiability Testing (SAT 2004), 10-13 May, 2004, Vancouver, BC, Canada

