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Abstract. In this paper we define a class of truth-value assignments, called bounded as-
signments, using a certain substitutional property. We show that every satisfiable Boolean
formula has at least one bounded assignment. This allows us to show that satisfying truth-
value assignments of formulas in USAT can be syntactically defined in the language of
classical propositional logic. We also discuss a possible application of bounded truth-value
assignments in local search and other methods for solving Boolean satisfiability problems.

Introduction

In 1986, Valiant and Vazirani published a paper entitled NP is as easy as detecting unique solutions
[8]. The paper presents a randomized reduction from SAT to the set USAT of all Boolean formulas
with a unique satisfying assignment. The paper became almost instantly the instigator of vigorous
research on USAT in the context of structural complexity theory (e.g. the study of randomized
reductions [2], polynomial-time hierarchy [7], or of the complexity of function inversion [9]).

Clearly, the studies of USAT do not benefit the computational complexity theory exclusively.
The use of high-performance SAT-solving methods (SAT solvers) in applied computer science
hinges upon encoding of probelms as instances of propositional satisfiability (SAT). Empirical evi-
dence indicates that computationally hard regions of same distributions of random formulas (such
as random 3-CNF or random hyper-CNF [5]) not only coincide with thresholds between satisfiabil-
ity and unsatisfiability but also occur near the regions where the number of formulas from USAT
is the largest. Figure 1 illustrates this correspondence for random hyper-CNF formulas (defined
in the next section): the number of uniquely satisfiable hyper-CNFs reaches its maximum at the
threshold between satisfiability and unsatisfiability. Similar experiments performed on random 3-
CNF's of 20 variables and m clauses show, for instance, that for a random sample of 1000 3CNF's,
the number of uniquely satisfiable formulas sharply increases from 0 (for m = 70) to 80 at the
threshold between satisfiability and unsatisfiability (at m = 91), and, then, it is followed by a
steep decrease, reaching 0 when m = 135. This empirical data seems to indicate that the studies
of USAT and, in particular, of properties of unique satisfying assignments, may provide insights
into the development of novel techniques for guiding the search for satisfying assignments in SAT
solvers.

The main result of this paper provides some evidence that such properties of unique assignments
can be formulated. We prove that unique truth-value assignments of formulas in USAT can be
defined syntactically in the language of propositional logic. To this end, we first define a class of
truth-value assignments, called bonded assignments. In Section 2 we show that every satisfiable
formula o has at least one bounded assignment and that among these assignments there is one
(denoted as h,) that can be defined syntactically. Hence the syntactic characterization of the
unique satisfying assignment of @ € USAT is given by the definition of h,,.

The class of bounded truth-value assignments deserves some attention for a number of reasons.
The definition of a bounded assignment can be used to develop new search heuristics for clausal as
well as non-clausal SAT solvers (see Section 3). Furthermore, the definition of h, constraints the
set of all satisfying assignments of « in the sense that it contains enough information to rule out

* Research supported by the grant from the Natural Sciences and Engineering Research Council of Canada.



A Note on Satisfying Truth-Value Assignments of Boolean Formulas 105

some truth-value assignments as satisfying « (cf. Lemma 2).

* 10-variable hyper-CNF's
¢ 15-variable hyper-CNF's
® 2(-variable hyper-CNFs

300
280
260
240
220
200
number 180

of

hyper- 160

CNFs 140

mn 120
80
60
40

20

20 30 0 50 60 70 T80
number of clauses n

10

Figure 1. The number of uniquely satisfiable formulas from the class H-CNF (m, n) (hyper-CNFs)
as a function of the number n of clauses. Sample size = 1,000 random hyper-CNFs, for every
value n of clauses. The threshold between satisfiability and unsatisfiability for hyper-CNFs
with 10 variables occurs when n = 31. For the hyper-CNFs with 15 and 20 variables, these
thresholds are 42 and 54, respectively.

The remainder of this paper is structured as follows. Section 1 contains logical preliminaries. Section
2 sketches the theory of bounded truth-value assignments. In Section 3 we demonstrate a possible
application of the theory by deriving a WalkSAT-like search heuristic. Finally, Section 4 contains
the proofs of theoretical results reported in this paper.

1 Logical Preliminaries

The formulas of classical propositional logic are constructed, in the usual way, in terms of proposi-
tional variables, logical connectives (negation —, disjunction V, conjunction A and, possibly, other
connectives) and the logical constant T' (truth). A clause is a disjunction of literals (i.e., of variables
and negated variables). A 3-CNF formula is a conjunction of clauses that contain exactly three
literals each. A hyper-CNF formula is a Boolean formula of the form

(c11 V e12) A (21 V eaz),

where c11, ¢12, ca1, and cog are 3-CNF formulas of the same number of clauses. By H-CNF(m, n) we
denote the class of all hyper-CNF's built in terms of m variables and such that every ci1, 12, 21,
and co9 is a conjunction of exactly n clauses.

EXAMPLE 1: The formula
(c11 V €c12) A (€21 V €22),

such that:

cll = (po V =p1 V p3) A(po V —p2 V —p3),
cl2 = (p1V —p2 Vp3) A(po VvV —p1 V ps3),

21 = (=po V =p1 V —p3) A (po V =p1 V =p2),
€22 = (p1 Vp2 Vp3) A(poV —p1V —p3).
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is a hyper-CNF from H-CNF(4,2). ]

A substitution is a mapping S that assigns a Boolean formula S(p;) to every variable p; of some
finite set {p1,...,pn} of propositional variables. We shall frequently represent a substitution S as
a finite list of the form [p1/S(p1),-..,Pn/S(pn)] which explicitly indicates the assignments of for-
mulas S(p;) to variables p;, 1 < i <n.If S = [p1/a1,...,pn/ay,] is a substitution and «(p1, ..., pn)
is a formula containing variables p1,...,p,, then S(a)-the application of S to a—is the formula
obtained from « by the simultaneous replacement of every occurrence of every variable p; with «;.
We shall frequently write a(p1/aa, ..., pn/ay,) instead of S(«).

The notions of a truth-value assignment and of a satisfying truth-value assignment of a Boolean
formula are defined in the usual way. We shall write h(8) = 1 to denote the fact that a formula 3
is true under a truth-value assignment h, and h(5) = 0 when S is false under h. Finally, if h is a
truth-value assignment, p is a propositional variable, and v € {0,1}, then by h[p/v] we denote the
truth-value assignment defined exactly like h with the exception that h[p/v](p) = v.

2 Bounded Truth-Value Assignments

This section introduces the notion of a bounded truth-value assignment of a Boolean formula and
reports basic facts concerning this class of assignments.

2.1 Bounded Truth-Value Assignments Defined

In his 1923 doctoral thesis entitled On the Primitive Term of Logistic, Alfred Tarski proved that
the following formula is a theorem of the logical system called Protothetic

Th. 66. [f] : 9p{f} >: [3p]-F(p). = S (V)

(cf, [6], Th. 66). From Th. 66, which Tarski calls the second theorem on the upper bound of a
function, it follows that for every truth-function f, if f(p) is true, then so is f(f(Vr)), where Vr
is defined in Protothetic as the logical constant verum. Phrased in the language of propositional
logic, Th. 66 becomes the following metatheorem:

LEMMA 1: Let a be a Boolean formula containing a propositional variable p and let h be a truth-
value assignment. If o is true under h, then so is the formula a(p/a(p/T)).

Theorem Th. 66 and Lemma 1 motivate the following definition.

DEFINITION 1: Let o be a Boolean formula. A truth-value assignment h is said to be bounded

for a if:

(b1) h(a) =1;
(b2) for every variable p that occurs in a, h(p) = h(a(p/T)).

ExXAMPLE 2: The formula —(p; = p2) has two satisfying truth-value assignments and both of them
are bounded. On the other hand, among the satisfying assignments for p; — ps, only one, defined
by h(p1) = h(p2) = 1, is bounded. [

2.2 Syntactic Characterization of Bounded Assignments

While a satisfiable formula may have more than one bounded assignment, one of them can always
be defined syntactically in the way described in Definitions 2 and 3 given below (see also Theorem

1).

DEFINITION 2: Let a(p1,...pn) be a formula and let py,...,p, be all the distinct variables that
occur in «. The substitutions S1,...,S, are defined as follows.

S1(p1) = a(p1/T);
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S1(q) is undefined, for every variable q # p1.
Suppose that the substitution S; has been defined, i > 1. Then
Siv1(pit1) = [Piv1/T](Si());

Si+1(pj) = [Pi+1/Sit1(pi+1)](Si(p;)), for every 1 < j <i;
Si+1(q) is undefined, for every variable q¢ not in {p1,...,pi+1}-

EXAMPLE 3: Let a(p1,p2) be =(p1 = p2). Then:
S1(p1) = ~(T = p2);

S1(p2) = undefined;
Sa(p2) = [p2/T1(S1(=(p1 = p2))) = [p2/T|(~(=(T = p2) =p2)) = ~(~(T =T) =T);
Sa(p1) = [p2/S2(p2)](S1(p1)) = [p2/S2(P)](—(T =p2)) = ~(T =~(=(T=T) =T)). u

DEFINITION 3: Let a(p1,...,pn) and the substitutions Si,...,S, be as in Definition 2. Let hg,
be the truth-value assignment defined as follows: for every variable p;,1 < i < n, if Sp(p;) = T,
then hq(p;) = 1; else ho(p;) =0 (ha(q) is defined in an arbitrary manner for the remaining vari-
ables).

EXAMPLE 4: Let a(p1,p2) be =(p1 = p2). Then, in view of Example 3,
Sa(p1) = -T and Sa(ps) = T.

By Definition 3, by (p1) = 0 while hq (p2) = 1. "

The assignment h, is defined syntactically in the language of propositional logic: for every p;,
Sn(pi) is a variable-free formula and, hence, it is equivalent to T or —7T.

The following lemma describes the way h, constarins the set of satisfying truth-value assign-
ments of a.

LEMMA 2: Let a(p1,...,pn) be a satisfiable formula and suppose that for some i < n, hq(p;) = 0.
Then for every choice vy, ...,v;_1 of truth-values

(a) halpi/vi, ... pic1/vie1,pi/1](a) = 0.

In view of Lemma 2, the definition of A, contains enough information to determine that some
other truth-value assignments must falsify o.

THEOREM 1: For every satisfiable Boolean formula o, he is a bounded truth-value assignment
for a.

Theorem 1 is the main theoretical result on bounded truth-value assignments reported in this
paper. When restricted to USAT, it gives us:

COROLLARY 1: If « € USAT, then the only satisfying assignment of « is hg .

In view of Corollary 1 and Definition 3, the unique satisfying assignments of formulas in USAT are
bounded and can be defined syntactically in the language of propositional logic. Definition 1(b2)
provides a characterization of unique truth-value assignments of formulas in USAT.

3 Search for Bounded Truth-Value Assignment

Theoretical results presented in the previous section open the possibility of using properties of
bounded truth-value assignments to derive new heuristics for guiding the search for satisfying
truth-value assignments. In this section we test this hypothesis by showing how one can derive the
search heuristic employed in the WalkSAT algorithm [3] from Definition 1.
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A stochastic local search SAT solver is an incomplete procedure that performs a local search
over the space of truth-value assignments (cf. Figure 2).

procedure xSAT(S)
for i := 1 to MaxTries do
h :=randomly chosen truth-value assignment
for j :=1 to MaxFlips do
if h(S) = {1} then return h
C :=randomly selected clause
such that h(C) =0
l(q) := select_literal(C, h)
h(q) :==1—h(q)
end for
end for
return ”satisfying assignment for S not found”

Figure 2. Generic stochastic local search algorithm for SAT.

Given an input CNF formula S, such an algorithm starts by generating a random truth-
assignment h restricted to the variables that occur in clauses of S. Then, it locally modifies h
until either a satisfying truth-value assignment is found or the limit on such modifications has
been reached and the algorithm declares its failure in finding a satisfying assignment. A modifica-
tion of a truth-value assignment h is done by, first, randomly selecting a clause C' from S that is
false under h and, then, by selecting a literal {(¢) of C' and changing (‘flipping’) the truth-value
of the variable g of I(q) as to satisfy C. The literal I(q) is selected using some search heuristic
select_literal(C, h).

The condition (b2) of Definition 1 can be exploited in a number of ways to derive search
heuristics. One can pursue an idea of minimization of the number of variables that violate (b2). Or
one can try to develop a measure that indicates ‘how close’ a given variable is to satisfying (b2).
In what follows, we shall pursue the later direction.

Let us consider a set S of clauses, a truth-value assignment h, a clause C' € S that is false
under h, and a literal I(q) of C. Let h* = h[¢/1 — h(q)] (i-e., h* is obtained from h by flipping
the truth-value of q). If I(¢) = ¢, then h(q) = 0 and h*(¢) = 1. In order for ¢ and h* to satisfy
(b2), h*(C'(q/T)) = h*(C") should equal 1 for every clause C’ that contains ¢. If this is the case,
q is a good candidate for the selection. Otherwise, a natural course of action would be to select a
variable that, after the flip of its truth-value, is the ‘closest’ to satisfying (b2). In other words, we
should

(BH) select a variable p as to minimize the number of clauses that contain p and which are false
when the truth-value of p is flipped.

Now, suppose that I(q) is a negative literal (i.e, I(q) = —¢). In this case h(q) = 1 and h*(q) = 0.
Since h*(C(q/T)) = h(C) = 0, we conclude that ¢ and h* satisfy (b2). Of course, flipping any
other negative literal of C' will have the same effect. We can therefore use (BH) for breaking ties
between negative literals. To conclude, we can use (BH) as a variable selection heuristic.

The heuristic (BH) is not entirely new. When combined with a random move, it results in the
search heuristic of the WalkSAT algorithm (see [1], heuristic SKC). Nevertheless, the derivation of
(BH) from (b2) can be viewed as an attempt at expanding the theory of local search by allowing
the development of search heuristics based on properties of truth-value assignments. Non-clausal
analogues of (BH) can also be derived from (b2) and applied in non-clausal local search SAT solvers
such as polSAT (cf. [4,5]).
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4 Technical Results

In this section we provide the proofs of Lemmas 1 and 2 and Theorems 1 and 2.

Proof of Lemma 1: Let o, p, and h be as stated and let us assume that h(a) = 1.

If h(a(p/T)) = 1, then h(a(p/a(p/T))) = h(a(p/T)) = 1. If h(a(p/T)) = 0, then h(p) = 0.
Indeed, if h(p) = 1, then h(a) = h(a(p/T)) = 1 contradicting our assumption. So, h(p) = 0 =
h(a(p/T)) which gives us h(a(p/a(p/T))) = h(a(p)) = 1. [ |
Proof of Lemma 2: Let o and p; be as stated. The condition (a) of Lemma 2 is equivalent to
the following statement: for every sequence vy, ...,v;_1 of logical constants T and F (F is =T,

(@) a(pi/vi, - Pi—1/Vi—1,0i/T, pix1/Sn(Dit1), - -, Pn/Sn(pn)) = F.

By the definition of S,,, S, (p;) can be obtained from
alpr/T,...,pi/Ty0ix1/Sn(Dit1),- s Pn/Sn(prn)) by a finite number of applications of the rewrite
rule

T = apy/T,....pi/T,pit1/Sn(Pi+1): - - - s Pn/Sn(pn))

that can be read as “replace an occurrence of T with
ap1/T,....pi/T,piy1/Sn(Pit1);s - Pn/Sn(pn)).” Hence,
a(p1/T,...,pi/T,pis1/Sn(Pi+1)s- - Pn/Sn(pn)) = F (otherwise, Sy(p;) = T).

Now, suppose that there is a sequence wvq,...,v;_1 of logical constants T and F such that
a(pr/v1, .. Pi1/Vi1,0i/ T Dix1/Sn(Dit1), - - s Pn/Sn(Drn)) = T. Then, in view of the definition
of S,, Sp(p;) can be obtained from
a(pr/vi, -y Pi-1/Vi-1,0i/ T, Pi+1/Sn(Pit1)s - - s Pn/Sn(pPn)) by a finite number of applications of
the rewrite rules:

F= a(pl/T7 e 7pi/T7p’i+1/S’n(pi+1)7 e apn/Sn(pn))a
T = alpr/vr,. ., pim1/Vi-1,0i /T, Pis1/Sn(Dits1), - - Pn/Sn(Pn))-

This would mean that S, (p;) = T which contradicts our assumption. This concludes the proof of
(a’). [ |

LEMMA 3: If « is a satisfiable Boolean formula, then h,(a) = 1.

Proof: Let h be any truth-value assignment that satisfies a(pi,...,p,). First we show that for
every 1 <1 < n,

(a) h(Si(a) = 1.

From (a) we deduce the conclusion of the lemma in the following way. Since S, («) is variable free,
h(Sn(a)) = ho(Sn(a)) = ho(a). So, in view of (a), we must have h,(a) = 1.

To show (a), let us note that, by Lemma 1 and the fact that h(«) = 1, we have h(S;(a)) =
h(a(p1/a(p1/T))) = 1, as required.

Now, suppose that h(S;(«)) = 1, for some ¢ > 1. By applying Lemma 1 to S;(«) and p; 11 we
get:

(b) h(Si(@)(pis1/Si(a)(pi+1/T))) = 1.

But Si1(a) = Si(a)(piy1/Sit1(piv1)) and Sip1(pit1) = Si(a)(piy1/T). So, by (b), h(Sit1(a)) =
h(Si(a)(pi+1/Si()(i+1/T))) = 1, as required. [

Proof of Theorem 1: Let «(p1,...pn) be a satisfiable Boolean formula. By Lemma 3, Definition
1(b1) is satisfied.
To show that h,, also satisfies the condition (b2) of Definition 1, let p; be such that h,(p;) = 1.
By Lemma 3, ho(a) = 1. So, ha(p;) = 1 = ha(a) = halpi/1](a) = ho(a(p:/T)), as required.
Finally, suppose that for some ¢ < n,hq(p;) = 0. For every 1 < j < n, let v; = hqo(p;). By
Lemma 2, ho(p;) = 0= ho[p1/v1,...,0i—1/vi—1,pi/1]() = ha(a(p;/T)), as required. [ ]
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5 Conclusions

In this paper we introduced the class of bounded truth-value assignments and showed that every
a € SAT has at least one bounded assignment. We proved that unique assignments of formulas
in USAT are bounded and that they can be defined syntactically in the language of propositional
logic. An interesting direction for future research is to further explore the properties of these
assignments for the purpose of expanding the theory of local search and other methods for solving
Boolean satisfiability problems.
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