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Abstract. Linear Pseudo-Boolean constraints offer a much more compact formalism to
express significant boolean problems in several areas, ranging from Artificial Intelligence to
Electronic Design Automation. This paper proposes a new algorithm for the Pseudo-Boolean
Optimization Problem (PBO) which integrates features from recent advances in Boolean
Satisfiability (SAT) and classical branch and bound algorithms. Moreover, the paper shows
that the utilization of lower bound estimates can improve the overall performance of PBO
solvers for different classes of instances. In addition, the paper describes how to apply non-
chronological backtracking in the presence of conflicts that result from the bounding process.
Finally, the paper also shows how the notion of Unique Implication Points (UIP), widely used
in modern SAT solvers, can be generalized for PBO.

1 Introduction

In [2], P. Barth first proposed a SAT-based approach for solving pseudo-boolean optimization.
This approach consists of performing a linear search on the possible values of the cost function,
starting from the highest, at each step requiring the next computed solution to have a cost lower
than the previous one. If the resulting instance is not satisfiable, then the solution is given by the
last recorded solution. Along with recent advances in SAT solvers, new pseudo-boolean solvers and
optimizers emerged using the same approach but with better results. The incorporation in solvers
of non-chronological backtracking in the search tree, conflict-based learning mechanisms and lazy
data structures have proved to be effective in solving pseudo-boolean instances [1, 4, 7].

In this paper we start by describing how a classical lower bound estimation method from the
covering domain can be adapted for a pseudo-boolean optimization algorithm. In section 3 we
focus on how to obtain explanations on bound-conflict situations that allow backtracking non-
chronologically when the search is bound due to the lower bound estimation and we also describe
how to reduce those explanations. In section 5 we present a generalization of the notion of unique

implication points (UIP) to strengthen the learning process in pseudo-boolean formulations. Finally,
we present some experimental results and the paper concludes in section 7.

2 Preliminaries

In a propositional formula, a literal lj denotes either a variable xj or its complement x̄j . If a literal
lj = xj and xj is assigned value 1 or lj = x̄j and xj is assigned value 0, then the literal is said to
be true. Otherwise, the literal is said to be false.

An instance P of a Linear Pseudo-Boolean Optimization problem can be defined as follows,

minimize
n∑

j=1

cj · xj

subject to
n∑

j=1

aij lj ≥ bi,

xj ∈ {0, 1}, aij , bi ∈ N+

0 , i ∈ {1..m}

(1)

where cj is a non-negative integer cost associated with variable xj , 1 ≤ j ≤ n and aij denote the
coefficients of the literals lj in the set of m linear constraints. Every pseudo-boolean formulation
can be rewritten such that all coefficients aij and right-hand side bi be non-negative.
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In a given constraint, if all aij coefficients have the same value k, then it is called a cardinality
constraint, since it only requires that ⌈bi/k⌉ literals be true. A pseudo-boolean constraint where
any literal set to true is enough to satisfy the constraint, can be interpreted as a propositional
clause. This occurs when the value of all aij coefficients are greater than or equal to bi.

If every constraint can be interpreted as a propositional clause then C is an instance of the
binate covering problem (BCP). Covering formulations have been the subject of thorough research
work that can be found in [5, 10, 14].

3 Estimation of Lower Bounds

The most widely used approach for solving pseudo-boolean problems is the classical branch-and-
bound procedure [6, 9] in which upper bounds on the value of the cost function are identified for
each solution to the constraints, and lower bounds on the value of the cost function are estimated
considering the current set of variable assignments. The search is pruned whenever the lower bound
estimate is higher than or equal to the upper bound. In these cases we can guarantee that a better
solution cannot be found with the current variable assignments and therefore the search can be
pruned. The algorithms described in [5, 9, 14] for the binate covering problem follow this approach
as well as several general integer programming solvers.

Branch and bound algorithms are proved to be very effective when the instances to be solved are
not highly constrained [5, 9]. With those instances, the tightness of the lower bounding procedure
is crucial for the algorithm’s efficiency, because with higher estimates of the lower bound, the
search can be pruned earlier. For binate covering, the most commonly used lower bound estimation
procedure is the approximation of a maximum independent set of clauses [6]. However, other
procedures can be used, namely the ones based on linear-programming relaxations [9]. Given a lower
bound value, additional techniques can be applied, namely the limit lower bound, first proposed
in [6], that we describe in this section.

3.1 Maximum Independent Set

The maximum independent set of constraints (MIS) is a greedy method to estimate a lower bound
on the value of the cost function based on an independent set of constraints. A more detailed
definition applied to binate covering can be found in [6]. Here we describe its generalization to
pseudo-boolean problems.

The greedy procedure consists of finding a set MIS of disjoint constraints (i.e. with no costly
literals in common among them), with a minimum cost to be satisfied greater than zero. Since
maximizing the cost of MIS is an NP-hard problem, a greedy computation is used. The effec-
tiveness of this method largely depends on the constraints included in MIS. Usually, one chooses
the constraint which maximizes the ratio between its weight and its number of unassigned costly
literals.

In order to build a maximum independent set of constraints, we must determine the minimum
cost to satisfy each constraint independently. Remember that a pseudo-boolean constraint ωi can
be viewed as:

ωi =

n∑

j=1

aij lj ≥ bi, (2)

Suppose all no-cost literals from ωi are true and let snc be the sum of the coefficients of all
no-cost literals from ωi, we would have:

ω
′

i =
n∑

j=1

aijxj ≥ bi − snc, (3)

Finding the minimum cost for satisfying ω
′

i provides the minimum cost to satisfy ωi and that
can be defined as:

minimize
n∑

j=1

cj · xj

subject to ω
′

i

(4)
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Since it would not be feasible to solve a pseudo-boolean optimization problem for each con-
straint, we define an approximation algorithm for the minimum cost of satisfying a pseudo-boolean
constraint. First, we determine the minimum number of literals that need to be true in order to
satisfy ω

′

i by reducing ω
′

i to a cardinality constraint [3]. This can be done by summing the sorted

set of ω
′

i coefficients, starting from the largest aij and checking if the sum of
∑n

j=1
aij < bi − snc

holds for each value of n. More detailed description of the cardinality reduction algorithm can be
found in [4].

Suppose that ω
′

ic denotes the cardinality constraint obtained by the cardinality reduction algo-

rithm applied to ω
′

i

ω
′

ic =
n∑

j=1

xj ≥ k, (5)

a lower bound on the minimum cost to satisfy ω
′

i is given by accumulating the cost of the first k
literals in a sorted set of literal coefficients in the problem cost function, starting with the lowest
cj .

Building the maximum independent set of constraints MIS is done by, at each step, adding a
new constraint with no literal in common with any other constraint already in MIS. The minimum
cost for satisfying MIS is a lower bound on the solution of the problem instance and is given by,

Cost(MIS) =
∑

ωi∈MIS

MinCost(ωi) (6)

where MinCost(ωi) denotes the lower bound on the minimum cost to satisfy ωi given by the
approximation algorithm described in this section.

Although the lower bound provided by the maximum independent set of constraints can be
arbitrarily far from the optimum, it is a simple and fast method to determine a lower bound on
the problem instance. Linear-programming relaxations [9] usually find much closer bounds, but are
much more time consuming, in particular on highly constrained instances.

4 Bound-Based Pruning Techniques

When using lower bound estimations on the value of the cost function, it is possible to apply
several techniques that prune the search tree. In this section we explain how to backtrack non-
chronologically when using lower bound estimations and also how to prune the search tree based
on the estimation value of the cost function.

4.1 Backtracking on Bound-based Conflicts

A bound conflict in an instance of the pseudo-boolean optimization problem (PBO) P arises when
the lower bound is equal to or higher than the upper bound. This condition can be written as
P.path + P.lower ≥ P.upper, where P.path is the cost of the assignments already made, P.lower is
a lower bound estimate on the cost of satisfying the clauses not yet satisfied (as given for example
by an independent set of constraints), and P.upper is the best solution found so far. From the
previous equation, we can readily conclude that P.path and P.lower are the unique components
involved in each bound conflict. Therefore, we will analyze both P.path and P.lower components
in order to establish the assignments responsible for a given bound conflict.

We start by studying P.path. Clearly, the variable assignments that cause the value of P.path

to grow are solely those assignments with a value of 1. Hence, we can define a set of literals ωcp,
such that each variable in ωcp has positive cost and is assigned value 1:

ωcp = {l = x̄j : Cost(xj) > 0 ∧ xj = 1} (7)

which basically states that to decrease the value of the cost function (i.e. P.path) at least one
variable that is assigned value 1 has instead to be assigned value 0.

We now consider P.lower. Let MIS be the independent set of constraints, obtained by the
method described in section 3.1, that determines the value of P.lower. Observe that each constraint
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in MIS is part of MIS because it is neither satisfied nor has common literals with any other
constraint in MIS. Clearly, for each constraint ωi ∈ MIS these conditions only hold due to the
literals in ωi that are assigned value 0. If any of these literals was assigned value 1, ωi could be
satisfied. Consequently, we can define a set of literals that explain the value of P.lower:

ωcl = {l : l = 0 ∧ l ∈ ωi ∧ ωi ∈ MIS} (8)

Now, as stated above, a bound conflict is solely due to the two components P.path and P.lower.
Hence, this bound conflict will hold as long as the following clause ωbc is unsatisfied:

ωbc = ωcp ∪ ωcl (9)

(Observe that the set union symbol in the previous equation denotes a disjunction of literals.) As
long as this clause is unsatisfied, the values of P.path and P.lower will remain unchanged, and so
the bound conflict will exist. We can thus use this unsatisfied clause ωbc to analyze the bound
conflict and decide where to backtrack to, using a conflict analysis procedure. We should observe
that backtracking can be non-chronological, because clause ωbc does not necessarily depend on all
decision assignments. Moreover, due to the clause recording mechanism, ωbc can be used later in
the search process to prune the search tree.

4.2 Reducing Bound Dependencies

After a careful analysis on how the bound explanation clause is built, several techniques can be
devised in order to reduce the number of dependencies when a bound conflict occurs.

For instance, suppose that we have xj = 1 and that a bound conflict arises. According to (7),
x̄j would be in ωcp. However, if we find a constraint ωi that is satisfied due to xj = 1 and if setting
or changing the value of any other literal in ωi would satisfy the constraint with a cost higher than
or equal to the cost of setting xj to 1, then the value xj is irrelevant for the bound conflict to
arise. Note that even in pseudo-boolean optimizers that do not use lower bound estimations, this
technique can be used to reduce the number of dependencies when a new solution is found.

A similar approach can be used to reduce the number of dependencies in ωcl. Suppose that
there is a literal xj ∈ ωcl because xj = 0 and xj is a literal in a single constraint ωi ∈ MIS. If
setting xj to 1 is more costly than any other set of assignments to satisfy ωi, then xj is not relevant
to explain the bound conflict.

4.3 Limit Lower Bound Theorem

The limit lower bound was first proposed in [6]. It states that by using lower bound estimation
methods, one can also prune the search tree by identifying some necessary assignments. That occurs
whenever after calculating the lower bound estimation we have:

P.path + P.lower + Cost(xj) ≥ P.upper (10)

when xj is not an unassigned literal in any constraint ωi ∈ MIS, then xj = 0 is a necessary
assignment since otherwise a bound conflict would occur.

5 Conflict Analysis Techniques

All modern SAT and pseudo-boolean solvers and optimizers use a conflict analysis procedure
in order to backtrack non-chronologically in the search tree. The first SAT solver to have such a
conflict analysis procedure was GRASP [13]. When a conflict arises GRASP generates a new clause
(no-good) to explain the conflict and change the value of the decision assignment at the current
level of the search tree. Moreover, GRASP also generates other no-good clauses from detecting
unique implication points (UIP) in the implication graph. In [17] it was shown that an aggressive
approach is more efficient in most cases by stopping at the first UIP detected in the conflict analysis
procedure. These concepts were transposed to pseudo-boolean solvers in [1]. In [4] a new conflict
analysis procedure is devised where the no-goods are general pseudo-boolean constraints, instead
of clauses. In this section we will generalize the UIP concept when learning propositional clauses
in pseudo-boolean solving.
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5.1 Learning Clause Constraints

An implication graph is a directed acyclic graph where each vertex represents a variable assignment
and edges represent the reasons that lead to the assignments. A conflict arises when a variable is
assigned both value 0 and value 1. In fig. 1 an example of an implication graph is shown where the
conflict occurs due to the assignment of 0 and 1 to variable x5. Unique implication points (UIP)
in the implication graph are vertexes that represent assignments which by itself are single reasons
for the conflict to occur. In fig. 1 assignments to x3 and x4 are UIPs.

In pseudo-boolean formulas from a single constraint it is possible to imply several variable
assignments. For instance, suppose we have the following constraints:

ω1 : 2x1 + x2 + 2x3 + x4 ≥ 3
ω2 : 2x̄3 + 3x5 ≥ 2
ω3 : 3x̄4 + 4x̄5 ≥ 3

(11)

where x1 = x2 = 0. In this situation we must necessarily have x3 = x4 = 1 in order to satisfy
constraint ω1. The implication graph is shown at fig. 2 where we can identify a conflict on variable
x5.

Applying the conflict analysis procedure from [1, 17] we would learn a new clause (x1 + x2)
that would allow the search to backtrack and change the value of the last decision assignment.
However, one should note that there is one cut in the implication graph that only crosses edges
from constraint ω1. We can interpret this situation as an UIP at the edge level instead of at a
vertex. Therefore, we can add a new clause representing a cut in the graph that only intercepts
antecedent edges from a single constraint. In this case we would add a clause (x̄3 + x̄4).

Notice that clauses generated through these graph cuts are not unit when the current decision
level is undone. The purpose is to strengthen the set of learned no-goods. Therefore, another new
clause must be added according to the procedure described in [17].

6 Experimental Results

In this section we compare the different algorithmic strategies presented in the paper using our
pseudo-boolean solver and optimizer. Our solver was run with a variant of the VSIDS [11] heuristic
adapted to deal with pseudo-boolean constraints and keeping all constraints learned during conflict
analysis. Neither restarts nor random backtracking were used. The CPU times presented are from
a Pentium IV processor at 1.7GHz with 1GB of physical memory. The time limit for each instance
was set to one hour.

In order to empirically test the technique of learning more clauses due to a cut in the implication
graph, as presented in section 5, we ran our pseudo-boolean solver in a set of scheduling benchmarks
from [15]. During preprocessing the constraint strengthening technique described in [7] and widely
used in mixed integer programming [12] is used. The probing used in the constraint strengthening
is also used to detect necessary assignments during preprocessing. In table 1 we show that there
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.

no cut with cut

Benchmark #Var. #Ctr. CPU CPU

acc-tight:0 1620 2565 time 242.69
acc-tight:1 1620 2565 33.39 34.26
acc-tight:2 1620 2799 18.45 17.21
acc-tight:3 1620 3528 424.75 167.17
acc-tight:4 1620 3528 329.48 445.54
acc-tight:5 1339 3329 100.61 170.93
acc-tight:6 1335 3324 378.29 368.34
acc-tight:7 1335 3324 264.16 125.09
acc-tight:8 1773 3751 587.59 531.26
acc-tight:9 1773 3734 189.45 69.81
Table 1. Results for pseudo-boolean solving

.

no bounds with bounds no bounds with bounds

Benchmark Sol CPU Sol CPU Benchmark Sol CPU Sol CPU

aim-100-1 6-yes1-1 43 0 43 0.01 ii8a1 54 0.27 54 0.05

aim-100-6 0-yes1-3 49 0.03 49 0.04 ii8a2 – time 137 1117.6

aim-200-1 6-yes1-2 105 0.03 105 0.03 ii8a3 – time – time

aim-200-3 4-yes1-3 111 0.26 111 0.36 par16-1-c 107 100.07 107 139.35

aim-50-2 0-yes1-4 26 0 26 0.01 par16-2 300 165.51 300 215.29

aim-50-3 4-yes1-2 28 0.01 28 0.01 par8-1-c 26 0 26 0.02

jnh17 67 0.08 67 0.09 par8-2 64 0.04 64 0.04

jnh1 55 0.48 55 0.94 par8-5-c 37 0.01 37 0.01

jnh201 62 111.08 62 8.19 qg1-07 49 8.83 49 7.69

jnh213 66 0.05 66 0.09 qg2-07 49 8.79 49 7.91

jnh217 69 8.22 69 4.98 qg3-08 64 16.64 64 29.87

jnh218 67 0.1 67 0.13 qg7-09 81 0.85 81 1.41
Table 2. Results for pseudo-boolean optimization

are in general improvements in CPU time in finding solutions for this benchmark set. When the
solver was unable to find the solution, the reason is presented.

In the experiment with our optimization algorithm we tested it by generating instances of the
Max-ONE problem (using a minimization model) from several instances of the DIMACS [8] and
quasi-group [16] benchmarks set. In table 2 we present the results from our algorithm when using
and not using lower bound estimates. Notice that in some instances, the algorithm is able to prune
the search tree due to the lower bound estimates and therefore is able to faster prove optimality
of the solution found. However, when the instance is harder to satisfy, few bound conflicts are
observed and the lower bounding mechanism mostly adds an overhead to the algorithm.

7 Conclusions

This paper describes the generalization of the maximum independent set of constraints as a lower
bound mechanism to the linear pseudo-boolean optimization problem. In the paper we also present
conditions that allow for non-chronological backtracking in the presence of bound conflicts. More-
over, preliminary results show that in some instances where the lower bound procedure is effective,
search can be pruned and improve the performance of pseudo-boolean solvers. In the paper we also
describe how to generalize the notion of Unique Implication Points to the linear pseudo-boolean
optimization.

Future research work will include the use of other lower bound mechanisms for solving pseudo-
boolean problems, namely the use of linear programming and lagrangian relaxations.
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