
Solving Non-clausal Formulas with DPLL search

Christian Thiffault1, Fahiem Bacchus1?, and Toby Walsh2??

1 Department of Computer Science, University of Toronto,
Toronto, Ontario, Canada

[cat|fbacchus]@cs.toronto.edu
2 Cork Constraint Computation Center,

University College Cork, Ireland.
tw@4c.ucc.ie

1 Introduction

State of the art SAT solvers typically solve CNF encoded SAT theories using DPLL based algorithms [1].
However, many problems are more naturally expressed by arbitrary propositional formulas or Boolean cir-
cuits. Hence in order to use modern SAT solvers these problems must be converted into CNF. Converting to
a simple and uniform representation like CNF provides conceptual and implementational simplicity. Indeed,
a number of key techniques for improving the effectiveness and efficiency of DPLL solvers were originally
designed to exploit the simple structure of CNF. However, such a conversion also entails considerable loss
of information about the problem’s structure, and this information could be exploited to improve search
efficiency.

In this paper, we argue that conversion to CNF is both unnecessary and undesirable. In particular, we
have implemented NOCLAUSE, a non-CNF DPLL like solver that achieves a raw efficiency very similar
to modern highly optimized CNF solvers by employing techniques very similar to those used in modern
CNF solvers. Furthermore, we demonstrate how the additional structure present in the original proposi-
tional formula can be exploited to achieve significant gains in solving power, to the point where on various
benchmarks NOCLAUSE outperforms the CNF solver it was based on.

The performance of our non-CNF solver is particularly encouraging for two other reasons. First, our
implementation, although carefully constructed, does not employ any cache level optimizations. Neverthe-
less its raw performance is still close to that of the highly optimized CNF solver ZCHAFF [2]. Hence, there
does not seem to be any intrinsic reason why a non-CNF solver cannot be as efficient as a CNF solver
given equal engineering effort. Second, there are many other potential ways of exploiting the structure of
the original propositional formula that we have not as yet experimented with. It seems likely that some of
these possibilities could yield additional performance improvements.

We begin by discussing CNF based SAT solvers, the way in which CNF encodings are generated, and
the inherent disadvantages of CNF encodings. Then we present a method for performing DPLL search with
a non-clausal encoding, and discuss the implementation techniques we utilized to obtain efficient inference
on the non-clausal encoding. To go beyond mimicking current levels of performance we then present two
techniques for exploiting the extra structure present in the non-clausal encoding. Empirical evidence shows
that these techniques yield significant increases in performance. There has been some earlier work in the
verification and theorem proving communities on formula based (or circuit based) solvers. We discuss this
previous work pointing out the differences and similarities with our approach in the various sections of the
paper. Finally we close with some concluding remarks.

2 SAT solving using CNF

Many problems are more naturally described using arbitrary propositional formulas rather than clausal form.
For example, hardware verification problems are often initially expressed in non-clausal form. To check the
satisfiability of such formulas, the standard technique is to convert them to CNF and utilize a CNF SAT
solver. Conversion to CNF is typically achieved using linear Tseitin encodings [3]. It is useful to review this
encoding to better understand the correspondence between a non-clausal solver and a CNF solver.

? Supported by Natural Science and Engineering Research Council of Canada.
?? Supported by Science Foundation Ireland.



148 Christian Thiffault, Fahiem Bacchus, and Toby Walsh

Tseitin encodings work by adding new variables to the CNF formula, one new variable for every sub-
formula of the original propositional formula, along with clauses to capture the dependence between these
new variables and the subformulas. This is best illustrated by an example. Consider the propositional for-
mula

(
A ⇒ (C ∧ D)

)
∨

(
B ⇒ (C ∧ E)

)
. The Tseitin encoding would introduce the new variableF1 to

represent the subformulaC ∧ D and the new clauses(¬F1, C), (¬F1, D), and(¬C,¬D,F1) to capture
the relationF1 ≡ (C ∧D). Similarly we would haveF2 ≡ (C ∧ E) and the clauses(¬F2, C), (¬F2, E),
and(¬C,¬E,F2). With these new variables we would now haveA ⇒ (C ∧D) ≡ A ⇒ F1 ≡ ¬A ∨ F1,
andB ⇒ (C ∧ E) ≡ ¬B ∨ F2. Now two more new variables would be introducedF3 ≡ ¬A ∨ F1 and
F4 ≡ ¬B ∨ F2 with the clauses(¬F3,¬A ∨ F1), (A ∨ F3), (¬F1, F3), (¬F4,¬B ∨ F2), (B ∨ F4), and
(¬F2, F4). Finally, we introduce one more new variableF5 ≡ F3 ∨ F4 with the clauses(¬F5, F3, F4),
(¬F3, F5), and(¬F4, F5).3

Tseitin CNF encodings are linear in the size of the original formula as long as the Boolean operators
that appear in the formula have linear clausal encodings. For example, the operatorsand, or, not, nand,
nor, andimpliesall have linear sized clausal encodings. Thek-ary and operatorA = A1 ∧ · · · ∧ Ak can
be represented with a set of clauses of lengthO(k) over the propositional variablesAi. Operators that do
not have linear clausal encodings includek-ary biconditionals,k-ary counting operators (e.g., exactly3 of
thek inputs are true), andk-ary parity operators. The CNF encoding also retains some of the structure of
the original formula. For example, any truth assignment to the variables of the original formula generates
a truth assignment to every subformula; i.e., every subformula evaluates toTRUE or FALSE under this truth
assignment. It is not difficult to see that a setting of the original variables will force a corresponding setting
of the “subformula” variables in the CNF encoding.

The CNF encoding has two main disadvantages. The first, and most fundamental problem is that a great
deal of structural information is lost: the clauses no longer directly reflect the structure of the original circuit.
For example, it is not immediately obvious that theFi variables represent derived signals rather than input
signals, thatF4 is upstream ofF2 in the original circuit, or thatF4 encodes anor gate whileF1 encodes an
andgate. In this simple example, some of this information can be computed from the clausal encoding. In
general, however, whilst some of this information can be computed from the clausal encoding, some of it is
intractable to compute. For example, it is intractable to determine which variables represent derived signals
and which represent the original variables in an arbitrary CNF encoded formula [5].

The second problem is that the CNF theory contains more variables, which means that the space of truth
assignments from which a solution must be found has been enlarged by an exponential sized factor. This
does not necessarily mean that in practice the search for a solution is any harder. Nevertheless, as we shall
explain, the difficulty of searching this larger space is exacerbated by the first problem, the lack of structural
information.

Loss of Structural Information.A number of works show that the structural information lost in a CNF
encoding can be used to give significant performance improvement. For example, the EqSATZ solver [6]
achieves significant gains by extracting and exploiting biconditionals from the CNF theory. Until very
recently, it was the only solver able to complete the par32 family of problems which contain many bi-
conditionals. More recently, the Lsat solver [7] has shown that extracting even more extensive structural
information can allow some problems, that are very hard for clausal solvers, to be solved quite easily. Given
that these solvers have to utilize specialized (and incomplete) methods to extract the structural information
they need, and given that many problems start off with a structure rich non-clausal encoding, it is natural
to see if we can solve the problem more efficiently and effectively in its original non-clausal encoding. In
addition to this empirical evidence, recent theoretical results show that on some problems structure can be
exploited to derive branching decisions that reduce the size of the search space exponentially [8].

The Added Variables.The second problem, that of additional variables in the CNF encoding, is an issue
that has been the subject of some previous work. The main approach taken, e.g., [9, 10, 7], has been to
annotate the CNF theory to distinguish between the original variables (the primary inputs) and the derived
variables (the internal signals). It is assumed that either the annotation is supplied with the CNF encoding
(thus a small amount of additional structural information is preserved) or is approximated by examining
the CNF encoding [7]. Given this annotation, the recommendation is then to restrict the DPLL search from
branching on any derived variable: once all of the primary inputs have been set all of the derived signals
can be determined by unit propagation. The benefit of this technique is that now the CNF encoding can

3 It is possible to build a more optimal encoding that only imposes the conditionF5 ⇒ F3∨F4 rather than equivalence
as long asF5 is not the descendant of an equivalence operator [4].



Solving Non-clausal Formulas with DPLL search 149

be solved by searching in a the same sized state space: the set of assignments to the original propositional
variables.

Unfortunately, there is compelling empirical and theoretical evidence that this simple technique is not
robust. For example, the Lsat solver uses this technique of branching only on input variables. It displays
impressive performance on a number of problems, but very disappointing performance on an even wider
range of problems. The most robust and powerful SAT solvers do not restrict their branching decisions in
this manner. From a theoretical point of view it can be shown that restricting the solver to branching only on
the input variables entails a reduction in the power of the proof system it implements. A number of results
of this form have been given in [11]. These results show that there exist families of Boolean circuits on
which a DPLL solver that branches only on the input variables (in the clausal encoding) will always explore
an exponentially sized search tree (irrespective of how it chooses which of the input variables it wants to
branch on), while a DPLL solver that is allowed to branch on the derived variables can construct a constant
sized refutation tree.

Theorem 1. There exists families of Boolean circuits such that a short resolution proof of unsatisfiability
exists if and only if branching on derived variables is allowed [11].

This result shows that we want to branch on the derived variables, so as not to suffer a loss in power
of the proof system. Hence, it is useful to analyze more carefully possible sources of inefficiency that such
branching can produce. First, it should be noted that it is not necessarily the case that a DPLL procedure will
search a larger space when additional variables are introduced. For example, if we add the new variables
Y1, . . . , Yn to a theory containing the variablesX1, . . . , Xn, but also include the clauses(¬Xi, Yi) and
(¬Y1, Xi) making eachYi equivalent to its correspondingXi, then there will be no effect on the size of the
DPLL search tree: each timeYi or Xi is set the other variable will be set by unit propagation.

One major source of inefficiency introduced when branching on derived variables arises from by sub-
sequent branching ondon’t carevariables. Consider for example a formula of the formPHPn ∨ (q ∧ p),
wherePHPn is an unsatisfiable formula requiring an exponentially sized resolution refutation (e.g., the
pigeon hole problem withn pigeons), andq andp are propositional variables. The clausal encoding of this
formula contains the added variablesB1 ≡ PHPn, B2 ≡ (q ∧ p), B3 ≡ (B1 ∨ B2), and other variables
added by the clausal encoding ofPHPn. If the solver first assignsB3 = TRUE, thenB2 = TRUE bothq
andp will be unit propagated toTRUE. This set of assignments satisfies the formula. However, the clausal
theory will still contain the clauses encoding the subformulaB1 ≡ PHPn so the solver’s job will not yet
be completed. If the solver was then to set the input variables ofPHPn, any such setting would force the
settingB1 = FALSE and the solver would be finished. Similarly, if the solver was to setB1 = FALSE then it
could find a setting of the variables inPHPn that falsifiesPHPn and again it would be finished. However,
if it made the wrong decision of first settingB1 = TRUE, then it would be faced with having to produce
an exponentially size refutation ofPHPn in order to backtrack to resetB1 = FALSE. All of this work is
unnecessary, but in the clausal encoding it is difficult to detect that the work is not needed.

In this example, we do not need to branch on any of the variables encodingPHPn. This part of the
formula and the variables in it have become don’t care variables: their values do not affect the value of the
formula. How often CNF DPLL solvers branch unnecessarily on don’t care variables, and how much search
is wasted by doing so is an empirical question. We present empirical results which along with previous
evidence [12, 13] indicates that the amount of wasted time is significant.

3 DPLL without conversions

Our approach is designed to check whether or not an arbitrary propositional formula is satisfiable. A propo-
sitional formula can be represented as an operator tree, where each internal node is a Boolean operator and
its children are subtrees representing its operands. After inputing the formula we first compress it by con-
verting the tree representation into a directed acyclic graph (DAG) in which all duplicates of a sub-formulas
are merged. For example, in the formula

(
A ⇒ (C ∧ D)

)
∨

(
B ⇒ (C ∧ D)

)
the DAG would contain

only one instance of the subformula(C ∧D). Propositional formulas represented as DAGS are often called
Boolean circuits. The conversion to a Boolean circuit can be done bottom up using hashing to identify
common sub-formulas.

Once the DAG representation is computed we store it in a contiguous section of memory and associate
with each node of the DAG (gate) the following data:



150 Christian Thiffault, Fahiem Bacchus, and Toby Walsh

1. A unique identifier.
2. A list of parent nodes (because we have a DAG a node might have many parents).
3. A list of children nodes.
4. The type of the node (e.g., the node might be a propositional variable, anandgate, anor gate, etc.).
5. A truth value (TRUE, FALSE, don’t care, or unknown.)
6. The decision level at which the node’s truth value changed fromunknown.
7. The reason that a node’s truth value changed fromunknown(either the trigger of a propagation rule or

a conflict clause).

Given this representation our task is to consistently label the nodes with truth values such that the top
level node (representing the entire formula) is labeledTRUE. A labeling is consistent if it respects the logic
of the node types. For example, if anandnode is labeledTRUE all of its children must be labeledTRUE, if a
not node is labeledFALSE its child must be labeledTRUE, etc. We try to find a consistent labeling, or prove
that one does not exist, using a backtracking tree search (i.e., a DPLL search) on the truth values assigned
to each node. This approach has been used in previous work on circuit-based solvers, e.g., [14–16].

Our backtracking search procedure chooses an unlabeled node to label, labels itTRUE or FALSE, prop-
agates the consequences of that label, and then recursively tries to label the remaining nodes. If that fails it
backtracks and tries the opposite label. Propagation utilizes the node’s data to propagate labels through the
DAG, e.g., if a node is labeledFALSE thenFALSE is propagated to all of its parents that areand gates; if
it is labeledTRUE and it is anand gate thenTRUE is propagated to all of its children, etc. Propagation of
labels goes up and down the DAG guided by a simple set of propagation rules. Similar propagation rules
were used in the works cited above.

A contradiction is detected when a node gets both aTRUE and aFALSE label. Once we have a contra-
diction we must backtrack and try a different labeling. It is not difficult to see that setting the truth value
of a node corresponds precisely to setting the variables identified with the subformula headed by that node
in the Tseitin CNF encoding. Similarly, propagation of labels corresponds to unit propagation in the CNF
theory.

Proposition 1. If assigning a variablev the truth valuex in the Tseitin CNF encoding of a circuit causes
another variablev′ to be assigned the truth valuey by unit propagation, then assigning the node corre-
sponding tov the valuex will cause the node corresponding tov′ to be assigned the valuey by applying
our propagation rules.

As in [15], for each propagated label we remember the set of node labels that caused the propagation.
For example, if we propagateTRUE to anandbecause all of its children were set toTRUE we would associate
the TRUE labels of all of the children as the reason for theTRUE labeling of theandnode. If theandnode
is subsequently labeledFALSE because of propagation from one of its parents, we would have another set
of node labels as the reason for theFALSE label. We can combine these labels to obtain a conflict set. The
negation of the labels in the conflict set is a conflict clause just like those constructed by CNF solvers.
In fact, by successively replacing the most recently propagated label by its reason until we have only one
label at the current decision level, we can precisely implement 1-UIP learning [17]. As in [15], we discover
and then store such conflicts in a clausal database. These conflict clauses are then unit propagated using
standard techniques (assigning two node labels as the watch labels). Thus nodes in the DAG are labeled by
unit propagation from the conflict clauses as well as by propagation in the circuit DAG.

Efficient Propagation in the DAGThe main difference in our implementation and the previous circuit
based SAT solvers cited above is that we adopt the watch literal technique from CNF solvers and apply it
to our circuit representation. Watches are used wherever they can make a propagation rule more efficient.
Propagation through anandgate provides a typical example. There are four rules for propagating involving
andgates:

1. If theandbecomesTRUE propagateTRUE to all of its children.
2. If a child becomesFALSE propagateFALSE to theandnode.
3. If all of the children becomeTRUE propagateTRUE to theandnode.
4. If theandnode isFALSE and all but one of the children areTRUE then propagateFALSE to the unlabeled

child.



Solving Non-clausal Formulas with DPLL search 151

Watches do not help the first two rules. In fact in the clausal encoding the first two rules would correspond to
unit propagation through the binary clauses(¬A,C), whereA is literal corresponding to theandnode and
C is one of its children. Watches do not aid in the efficiency of binary clauses either. To make the second
rule efficient we instead divide the parent list of a node into separate lists based on the parent’s type. So we
would have a separate list ofandparents, another list ofor parents, etc. Thus when a node is labeledFALSE

we can efficiently propagateFALSE to all of itsandparents.
Watches offer significant improvement for the third and fourth rules. For everyandnode we assign two

children to beTRUE watches, and for every node we maintain a list of parents it serves as aTRUE watch for
(the node might also be aFALSE watch for someor nodes). We maintain the invariant that neither watch
should be assignedTRUE unless we have no other choice, or the other watch is alreadyFALSE. When a node
is assignedTRUE we examine each of the parents for which it is aTRUE watch. For each parent we first
look at the other watch child, if that child is alreadyFALSE we do not need to do anything. If it isTRUE then
we know that every child of the parent is now true, and we can activate the third rule propagatingTRUE to
the parent. Otherwise we look to see if we can find another child of the parent that is currently unassigned
or FALSE and make that the new watch. If we cannot find an alternative watch we leave the current watch
intact, obtaining oneTRUE watch and one unassigned watch, and check theandnode to see if it is currently
FALSE. If it is then we activate rule four and propagateFALSE to the sole unassigned watch child. Finally,
whenever we label anand node toFALSE, we look at its two watch children. If one of these isTRUE we
know that the other is the only remaining unassigned child, and we activate rule four propagatingFALSE to
that child.

Previous circuit based solvers [14, 15] have restricted themselves to binary Boolean operators and have
used tables to perform label propagation in the DAG. Although table lookup is fast, to propagateTRUE to
anand node containing thousands of children (and then converted to a tree of binaryand nodes) requires
a table lookup every time one of the children is labeled. With the watch child technique, we only need to
perform some computation when a watch child is labeled. One of the suites we experimented with (VLIW-
SAT.1.1 due to M. Velev) containedandnodes with an average of 15.9 children, and had someandnodes
with over 100,000 children. The other suites also contained someand nodes with thousands of children.
As a result we found that implementing the watch child technique for triggering propagation in the DAG
yielded very significant gains in efficiency. Besides watches for theandpropagation rules we were able to
use an analogous set of watches for theor, iff, andxor propagation rules. Watches were also used in don’t
care propagation.

As a result, conversion to CNF does not seem to be necessary. A non-clausal DPLL SAT solver can
duplicate the search performed by a CNF solver: labeling nodes corresponds to making literals in the CNF
encodingTRUE, propagation in the DAG corresponds to unit propagation in the CNF encoding, conflicting
labels corresponds to conflicting assignments to a variable in the CNF encoding, and conflicts consisting
of sets of labels correspond to conflict clauses in the clausal encoding. Furthermore, propagation in the
DAG can be made just as efficient as unit propagation in the CNF encoding by using watched children. A
non-CNF solver can also be more efficient than a CNF solver when the input formula contains complex
operators, likek-ary biconditional operators ork-ary counting operators. Efficient propagation rules for
these operators can be developed, e.g., [16], whereas a CNF solver would have to deal with the large number
of clauses needed to encode these operators. Besides being able to duplicate the behavior of CNF solvers,
non-CNF solvers also have the advantage of retaining the structural information contained in the original
propositional formula. In the next section we present two simple techniques for exploiting this structure.

4 Exploiting Structure

4.1 Don’t Care Propagation

The problem described earlier where a clausal solver might branch on a don’t care variable is easily ad-
dressed using the circuit structure. Two techniques have previously been described in the literature for
exploiting don’t cares. Gupta et al. tag each variable with fanin and fanout information from the original
circuit [13]. Using this information they are able to detect when a clause encodes part of the circuit that
no longer influences the output, given the variable assignments we have already made. Such clauses are
tagged as being inactive and are restored to active status when backtracking makes them relevant again. The
detection of inactive clauses requires a sweep through all of the active clauses in the theory. This sweep
must be performed at every node in the search tree.



152 Christian Thiffault, Fahiem Bacchus, and Toby Walsh

Safarpour et al. use a different technique [12]. They maintain the original circuit and use it to mark
variables that dynamically become don’t cares (lazy in their notation). Then they prohibit the CNF solver
from branching on don’t care variables. They scan the entire circuit to detect don’t care variables at every
node of the search tree.

Like Safarpour et al. we also use a variable marking technique. However, we have gained efficiency
by using watches and by not having to maintain both a CNF encoding as well as a circuit description. To
understand how watches improve efficiency consider a typical example when a node is the child of anand
node that has been labeledFALSE. The node’s label is then irrelevant with respect to its impact on this
particularand parent. However, the node might still be relevant to the label of its other parents. Hence,
a node’s value becomes irrelevant to the circuit as a whole only when for each of its parents it is either
irrelevant to that parent’s value, or that parent has itself become irrelevant to the circuit’s output.

To perform efficient propagation of don’t care values through the DAG we use a single don’t care watch
parent for each node. The invariant for a don’t care watch parent is that the parent should not be a don’t care
and that the child it is watching should not be irrelevant to its value. Whenever a node is assigned at truth
value that makes its watched children irrelevant, or when a don’t care value is propagated to it we search
for a new don’t care watch parent for each watched child. If we fail to find one we can propagate a don’t
care to the child and then perhaps subsequently to the child’s children, etc. Our use of watches means that
computation is required only when the watch parent is modified, changes to the other parents do not require
any computation. In the approaches described above a node will be checked every time one of its parents is
modified.

Some of the problems we experimented with contained nodes with over 8,000 parents, and an average
of 23 parents per node. Many other problems contained nodes with over a 1,000 parents. Hence our watch
technique yielded significant gains. As described below, on some problems we obtained a speedup of 38
times using don’t care propagation. The above cited works report speedups from don’t care propagation in
the order of only 3 to 7 times. This is evidence that CNF solvers are wasting a significant amount of time
by branching on don’t care variables, and are thus suffering from the lack of the structural information in
the CNF encoding.

4.2 Conflict Clause Reduction

Another structure based technique we have implemented is conflict clause reduction. To the best of our
knowledge this technique is new to this work. The idea is simple, when we learn a conflict clause it will
contain some set of node labels. We examine these labels to see if any of them are “locally” redundant
given the circuit structure, and if they are we remove them. We say that label` makes label̀ ′ redundant
if one of DAG propagation rules generates`′ from `. For example, ifn is anandnode andn′ is one of its
children, thenn = FALSE makesn′ = FALSE redundant. In a conflict clause we can remove any redundant
labeling. For example, if we have the conflict clause(n = FALSE, n′ = FALSE, x = TRUE, . . .) we can
reduce this clause to(n = FALSE, x = TRUE, . . .). This corresponds to a resolution step: we have that
n′ = FALSE ⇒ n = FALSE ≡ (n′ = TRUE, n = FALSE), which resolved against the conflict clause yields
the reduced clause. In addition to removing any label made redundant by another label, we can transitively
remove all labels made redundant by the redundant label. Since redundancies are defined with respect to
local DAG propagation rules, all redundancies can be efficiently checked by examining the parents and
children of the node in the label.

We experimented with various uses of conflict clause reduction and found empirically that the most
effective use was to employ reduction on shorter conflict clauses, length 100 or less. For longer clauses the
clause remained too long even after reduction, whereas on the shorter clauses the reduction produced more
useful clauses. It should also be noted that conflict clause reduction has a cumulative effect: conflict clauses
produce new conflict clauses, so shorter conflict clauses produce new conflict clauses that are themselves
shorter.

5 Empirical Results

Our non-clausal DPLL solver NOCLAUSE uses the ideas described above. We represent the input as a
propositional formula in ISCAS format, convert it to a non-redundant Boolean circuit, perform 1-UIP clause
learning at failures, use ZCHAFF’s VSIDS heuristic to guide branching, perform don’t care propagation, and
use the circuit structure to reduce all learned clauses of size 100 or less.



Solving Non-clausal Formulas with DPLL search 153

ZCHAFF NOCLAUSE

Benchmark Time Decisions Impl/s Size Time Decisions Impl/s Size

sss-sat-1.0 (100) 128 2,970,794728,144 70 225 1,532,843616,705 39
vliw-sat-1.1 (100) 3,284154,742,779302,302 82 1,0334,455,378260,779 55
fvp-unsat-1.0 (4) 245 3,620,014322,587 326 172 554,100402,621 100
fvp-unsat-2.0 (22)20,903 26,113,810327,590 651 4,1045,537,711267,858 240

Table 1.Comparison between ZCHAFF and NoClause on 4 benchmark suites

ZCHAFF NOCLAUSE

Problem # Vars. Time Decisions Impl/s Cls Size Time Decisions Impl/s NG Size

2pipe 892 0.14 6,3621,156,271 35 0.27 4,8801,133,000 17
2pipe1 834 0.17 5,2541,075,924 32 0.13 3,323 925,923 13
2pipe2 925 0.25 6,6641,042,740 38 0.31 5,697 828,923 18
3pipe 2,468 2.74 39,102 865,566 88 1.45 14,898 702,202 24
3pipe1 2,223 2.43 25,939 724,459 87 7.93 39,859 419,688 48
3pipe2 2,400 3.80 35,031 723,537 93 5.99 31,622 414,157 36
3pipe3 2,577 6.94 53,806 653,575 105 7.10 37,258 427,852 53
4pipe 5,237 188.89 541,195 467,001 253 9.87 41,637 509,433 40
4pipe1 4,647 26.55 131,223 512,108 158 35.52 114,512 327,098 77
4pipe2 4,941 49.76 210,169 482,896 186 36.50 112,720 327,298 84
4pipe3 5,233 144.34 392,564 424,551 254 62.03 169,117 316,049 108
4pipe4 5,525 93.83 295,841 470,936 228 42.26 122,497 326,186 112
5pipe 9,471 54.68 334,761 526,457 258 33.34 102,077 409,154 93
5pipe1 8,441 126.11 381,921 425,921 273 116.18 255,894 280,758 140
5pipe2 8,851 138.62 397,550 437,166 276 177.24 362,840 279,298 165
5pipe3 9,267 137.70 385,239 441,319 271 134.08 292,802 295,976 165
5pipe4 9,764 873.81 1,393,529 370,906 406 284.62 503,128 270,234 208
5pipe5 10,113 249.11 578,432 456,400 324 137.09 283,554 298,903 172
6pipe 15,800 4,550.92 5,232,321 322,039 619 297.13 435,781 288,855 232
6pipe6 17,064 1,406.18 2,153,346 402,301 469 1,056.561,326,371 267,207 309
7pipe 23,910 12,717.0012,437,654 306,433 900 1,657.701,276,763 244,343 336
7pipebug 24,065 128.90 1,075,907 266,901 393 0.29 481 403,148 10

Table 2.Comparison between ZCHAFF and NOCLAUSE on the complete fvp-unsat-2.0 benchmark suite

We designed our solver to perform a carefully controlled experimental comparison with the ZCHAFF

solver. ZCHAFF is no longer the fastest SAT solver, but its source code is available. Hence, we were able
to have better control over the differences between our solver and ZCHAFF. In particular, we duplicated as
much as possible ZCHAFF’s branching heuristic, clause learning, and clause database management tech-
niques by careful examination of the ZCHAFF code. Hence we were able to build NOCLAUSE so that the
differences with ZCHAFF are mainly dependent on NOCLAUSE’s use of the circuit structure. This allows us
to assess more accurately the benefits of using a non-CNF representation.

For this reason we compare only with the ZCHAFF solver. Our aim is to demonstrate the specific ben-
efits of a non-CNF representation. Other more recent solvers, e.g., BerkMin and Siege, employ different
branching heuristics from ZCHAFF and to some extent different clause learning techniques, and are often
able to outperform ZCHAFF with these new techniques. However, as explained in Sec. 3 a non-CNF solver
can be made to duplicate the search performed by a CNF solver. Thus it should be possible to implement
the same branching and clause learning techniques employed in these other solvers with a commensurate
gain in efficiency. It seems plausible that at least some of the gains we obtain from exploiting structural in-
formation would be preserved under these alternate branching and clause learning strategies. Unfortunately,
the exact nature of the strategies employed in many of these solvers remains undisclosed so it is difficult to
test such a conjecture.

Another restriction in our experimental results is that our solver requires non-CNF input. It was quite
difficult to obtain non-CNF test problems, and the only ones that were able to obtain had already suffered
some loss of structural information by been encoded into ISCAS format which contains onlyand, or, and
not gates. We expect to see even better performance on problems which have not been so transformed. All
experiments were run on a 2.4GHz Pentium IV machine with 3GB of RAM.



154 Christian Thiffault, Fahiem Bacchus, and Toby Walsh

NOCLAUSE NOCLAUSE without DON’ T CARES

Benchmark Time DecisionsStep Impl/s DC/s Time Decisions Step Impl/s

sss-sat-1.0 (100) 225 1,532,8434.20411,760204,945 272 3,095,245 6.75 652,927
vliw-sat-1.1 (100) 1,0334,455,3786.32175,995 84,784 2,12013,208,36310.86 381,188
fvp-unsat-1.0 (4) 172 554,1003.95212,012190,609 494 3,442,12312.42 295,179
fvp-unsat-2.0 (22)4,1045,537,7113.03186,603 81,255 30,93420,382,047 3.18 335,242

Table 3.Analysis ofDON’ T CARE propagations in NOCLAUSE on 4 benchmark suites

NOCLAUSE NOCLAUSE without DON’ T CARES

Problem Time Decisions Impl/s DC/s Total/s Time Decisions Impl/s

4pipe 9.87 41,637337,405172,028509,433 57.68 198,828 526,014
4pipe1 35.52 114,512236,336 90,762327,098 62.65 159,049 413,037
4pipe2 36.50 112,720234,174 93,124327,298 94.46 212,986 438,386
4pipe3 62.03 169,117233,951 82,098316,049 213.27 365,007 404,224
4pipe4 42.26 122,497244,725 81,460326,186 318.64 525,623 412,208
5pipe 33.34 102,077281,338127,816409,154 246.93 650,312 559,266
5pipe1 116.18 255,894194,417 86,341280,758 300.59 489,825 380,509
5pipe2 177.24 362,840190,681 88,617279,298 360.67 585,133 392,928
5pipe3 134.08 292,802206,226 89,750295,976 387.65 593,815 405,352
5pipe4 284.62 503,128198,872 71,362270,234 2097.311,842,074 360,270
5pipe5 137.09 283,554212,402 86,501298,903 379.19 543,535 448,226
6pipe 297.13 435,781194,494 94,361288,855 10,241.644,726,470 283,592
6pipe6 1,056.561,326,371192,991 74,216267,207 3,455.352,615,479 374,503
7pipe 1,657.701,276,763163,934 80,409244,343 12,685.596,687,186 343,710
7pipebug 0.29 481 345,986 57,162403,148 1.00 2,006 481,415

Table 4.Analysis of theDON’ T CARE propagations in NOCLAUSE on the non-trivial problems from the fvp-unsat-2.0
benchmark

Table 1 shows the performance of ZCHAFF and NOCLAUSE on four different benchmark suites con-
taining a total of 226 problems. These suites were the only difficult problems we found that were available
in both CNF and non-CNF formats. The table shows the total run time (all times in CPU seconds) to solve
the suite, the total number of decisions (branches) over all of the search tree explored, and the rate of unit
propagations per second achieved. It also shows the average size of the conflict clauses learned over the
suite. We see that NOCLAUSE is faster on all but the easiest of suites (sss-sat-1.0 where each problem took
ZCHAFF an average of 1.3 seconds to solve). NOCLAUSE is significantly faster on the hardest of the suite
fvp-unsat-2.0. We also see that it makes far fewer decisions and learns shorter conflict clauses. Furthermore,
its raw performance, measured in terms of implications per seconds is comparable with ZCHAFF.

Table 2 shows the runtimes of ZCHAFF and NOCLAUSE in more detail on the fvp-unsat.2.0 suite. On
the larger problems, ZCHAFF is learning very long conflict clauses, much longer than those learned by
NOCLAUSE. We also see that NOCLAUSE displays more uniform scaling behavior.

Table 3 shows the effect of don’t care propagation on NOCLAUSE’s performance. We see that don’t
care propagation is a major contributor to its performance. Without don’t care propagation NOCLAUSE has
similar but inferior performance to ZCHAFF. Only on vliw-sat-1.1 does it continue to outperform ZCHAFF.
The table also shows the average number of don’t care implications per second on these suites, and the
average number of backjump levels on detecting a conflict. We see that without don’t cares the solver will
jump back further on average. This is because the solver is able to jump back over decision levels where
don’t care variables were branched on. Nevertheless, despite the ability of conflict clauses to jump back
over don’t care decisions, don’t care decisions still have a significant negative impact on performance.

Table 4 shows in more detail the results of don’t care propagation on the non-trivial problems in the
fvp-unsat-2.0 suite. We see that don’t care propagation has its largest impact on the hardest problems.
For example, we obtain a speed up factor 34 on the 6pipe instance. We also see that the total number
of propagations per second (implications plus don’t cares indicated in the Total/s column) remains fairly
similar with the addition of don’t care propagation, but that don’t care propagation of course do take extra
time to perform.

Table 5 shows the effect of conflict clause reduction on performance. The size column shows the average
size of a conflict clause learned, we see that without reduction the conflicts are significantly larger. Note that



Solving Non-clausal Formulas with DPLL search 155

NOCLAUSE NOCLAUSE without reductions
Benchmark Time Decisions Impl/s SizeExam Rem Time Decisions Impl/s Size

sss-sat-1.0 225 1,532,843616,705 39 90% 12% 228 1,624,312628,953 52
vliw-sat-1.1 1,0334,455,378260,779 55 88% 11% 984 4,322,679281,017 90
fvp-unsat-1.0 172 554,100402,621 100 73% 11% 402 820,582311,127 119
fvp-unsat-2.04,1045,537,711267,858 240 33% 16% 5,6757,614,898246,498 418

Table 5. Analysis of clause reductions in NOCLAUSE on 4 benchmark suites. Exam: percentage of conflict clauses
examined; Rem: percentage of literals removed from the examined clauses

the size of the clause was measured prior to being reduced. The table also shows the percentage of clauses
that are examined for reduction (only clauses of length 100 or less are reduced) and of these the percentage
reduction achieved. We see that for the easier suites, sss-sat-1.0, and vliw-sat-1.1, clause reduction does not
help—the clauses are already quite short. For the two harder suites clause reduction does provide useful
performance gains, although less significant than don’t cares. We also see that as the problems get harder,
the conflict clauses get longer and the percentage of conflict reduced goes down. However, despite only
reducing 33% of the conflicts in the fvp-unsat-2.0 suite, we still cut the average size of the conflicts by
almost half. This shows that reducing only some of the conflicts can still have a significant impact on other
learned conflicts.

6 Conclusion

Our results demonstrate that conversion to CNF is unnecessary. A DPLL like solver can reason with Boolean
circuits just as easily as with a clausal theory. We have implemented NOCLAUSE, a non-CNF DPLL like
solver with similar raw efficiency to highly optimized clausal DPLL solvers. Reasoning with Boolean cir-
cuits offers a number of advantages. For example, we can support much more complex inference like for-
mula rewriting, as well as propagation rules for complex gates like counting gates. We can also use the
circuit structure to simplify learned clauses, and to inform branching heuristics. NOCLAUSE is related to a
number of previous works on circuit based Boolean solvers. Its main innovations are (a) greater efficiency
through adaptation of the watch literal technique and (b) its new technique of conflict clause reduction. It is
also the first circuit based solver that performs don’t care propagation (previous uses of don’t care reason-
ing have built on top of CNF solvers). We have demonstrated empirically that don’t care propagation has
a very significant impact on performance, and that conflict clause reduction can offer useful performance
improvements.

Our experimental results are very promising. We often outperform a highly optimized solver like ZCHAFF.
We expect that the results would be even more favorable if the benchmarks available to us had not already
lost some of their structure. As we explained before, the ISCAS format only containsand, or, andnotgates.
There are many other ways in which we expect performance could be further improved. For example, more
complex preprocessing of the input circuit, as in BCSat [16], is likely to offer major efficiency gains. Most
interesting, however, is that we have only scratched the surface with respect to using structure to perform
more sophisticated clause learning, branching, and non-chronological backtracking. Future work on these
topics has the potential to deliver significant performance improvements.

References

1. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Communications of the ACM
4 (1962) 394–397

2. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient sat solver. In: Proc.
of the Design Automation Conference (DAC). (2001)

3. Tseitin, G.: On the complexity of proofs in poropositional logics. In Siekmann, J., Wrightson, G., eds.: Automation
of Reasoning: Classical Papers in Computational Logic 1967–1970. Volume 2. Springer-Verlag (1983) Originally
published 1970.

4. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. Journal of Symbolic Computation
2 (1986) 293–304

5. Lang, J., Marquis, P.: Complexity results for independence and definability in propositional logic. In: Proceedings
of the International Conference on Principles of Knowledge Representation and Reasoning. (1998) 356–367



156 Christian Thiffault, Fahiem Bacchus, and Toby Walsh

6. Li, C.M.: Integrating equivalence reasoning into davis-putnam procedure. In: Proceedings of the AAAI National
Conference (AAAI). (2000) 291–296

7. Ostrowski, R., Gŕegoire, E., Mazure, B., Sais, L.: Recovering and exploiting structural knowledge from CNF
formulas. In: Principles and Practice of Constraint Programming. Number 2470 in Lecture Notes in Computer
Science, Springer-Verlag, New York (2002) 185–199

8. Beame, P., Kautz, H., Sabharwal, A.: Using problem structure for efficient clause learning. In: Sixth International
Conference on Theory and Applications of Satisfiability Testing (SAT 2003). Number 2919 in Lecture Notes In
Computer Science, Springer (2003) 242–256

9. Giunchiglia, E., Sebastiani, R.: Applying the Davis-Putnam procedure to non-clausal formulas. In: AI*IA 99:
Advances in Artificial Intelligence: 6th Congress of the Italian Association for Artificial Intelligence. Volume 1792
of Lecture Notes in Computer Science., Springer (2000) 84–95

10. Giunchiglia, E., Maratea, M., Tacchella, A.: Dependent and independent variables for propositional satisfiability.
In: Proceedings of the 8th European Conference on Logics in Artificial Intelligence (JELIA). Volume 2424 of
Lecture Notes in Computer Science., Springer (2002) 23–26

11. J̈arvisalo, M., Junttila, T., Niemelä, I.: Unrestricted vs restricted cut in a tableau method for Boolean circuits. In:
AI&M 2004, 8th International Symposium on Artificial Intelligence and Mathematics. (2004) Available on-line at
http://rutcor.rutgers.edu/ amai/aimath04/.

12. Safarpour, S., Veneris, A., Drechsler, R., Lee, J.: Managing don’t cares in boolean satisfiability. In: Proceedings
of the Design, Automation and Test in Europe Conference and Exhibition Volume I (DATE’04), IEEE Computer
Society (2004) 10260

13. Gupta, A., Gupta, A., Yang, Z., Ashar, P.: Dynamic detection and removal of inactive clauses in sat with application
in image computation. In: Proceedings of the 38th conference on Design automation, ACM Press (2001) 536–541

14. Circuit-based Boolean Reasoning. In: Proceedings of the 38th conference on Design automation, ACM Press
(2001)

15. Ganai, M.K., Ashar, P., Gupta, A., Zhang, L., Malik, S.: Combining strengths of circuit-based and cnf-based
algorithms for a high-performance sat solver. In: Proceedings of the 39th conference on Design automation, ACM
Press (2002) 747–750

16. Junttila, T., Niemelä, I.: Towards an efficient tableau method for boolean circuit satisfiability checking. In: Com-
putational Logic - CL 2000; First International Conference. Volume 1861 of Lecture Notes in Computer Science.,
Springer (2000) 553–567

17. Zhang, L., Madigan, C.F., Moskewicz, M.H., Malik, S.: Efficient conflict driven learning in a boolean satisfiability
solver. In: Proceedings of the 2001 IEEE/ACM international conference on Computer-aided design, IEEE Press
(2001) 279–285

18. Otten, J.: A non-clausal Davis-Putnam proof procedure. In: Proceedings of the International Joint Conference on
Artifical Intelligence (IJCAI). (1997) 82–82


