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Abstract. Structural logical formulas sometimes yield a substantial fraction of so called
equivalence clauses after translating to CNF. The best known example of this feature is
probably provided by the parity-family. The larger such CNF formulas cannot be solved in
reasonable time if no extra reasoning with - and detection of - these clauses is incorporated.
That is, in solving these formulas, there is a more or less separated algorithmic device in
dealing with these equivalence clauses, called equivalence reasoning, and another dealing
with the remaining clauses. In this paper we propose a way to align these two reasoning
devices by introducing parameters for which we establish optimal settings over a variety of
existing benchmarks. We obtain a truly convincing speed up in solving such formulas with
respect to the best solving methods existing so far.

1 Introduction

The notorious parity-32 benchmarks [3] remained unsolved by general purpose Sat solvers for
a considerable time. In [11] a method was proposed which, for the first time, could solve these
instances in a few minutes. The key to this method was to detect the clauses which represented so
called equivalences l1 ↔ l2 ↔ · · · ↔ ln ( where the li are literals, or their negations, appearing in
the formula at hand ) and to pre-process the set of these equivalences in such a way that dependent
and independent variables became visible. The remaining clauses then where tackled with a rather
straightforward DPLL procedure but in such a way that kept track of the role of these dependent
and independent variables. As it was developed, it was a two-phase method, where the equivalence
part was established and transformed in a pre-processing phase.

The next important step was made by Li [5, 6] which incorporated a sort of equivalence reasoning
in any node of an emerging search tree. His approach did not incorporate a pre-processing phase
and thus he established the first one-phase Sat solver eqsatz which could tackle these instances in
reasonable time.

A disadvantage of his method is the fact that he uses a full lookahead approach (very costly
for larger size formulas) and evaluates the speed in reduction of the formula in a - to our opinion
- not optimal way. Also, his equivalence reasoning is restricted to equivalences of length at most
three.

Some years later Ostrowski et al. [9] extended the above pre-processing ideas from [11] to logical
gates other than equivalences, resulting in the lsat solver. However, their DPLL approach to deal
with the remaining CNF-part uses a Jeroslow-Wang branching rule and they do not perform a
lookahead phase, which is - again to our opinion - not an optimal alignment.

In this paper we propose an alignment of equivalence reasoning and DPLL reasoning which
does not assume a full lookahead approach. This will enforce us to introduce adequate pre-selection
heuristics for selecting variables which are allowed to enter an Iterative Unit Propagation phase.
Further, we will evaluate the progress in enrolling the formula at hand in a more detailed manner as
was done in eqsatz. We are forced to introduce parameters to guide this search. This parameters are
needed to aggregate the reduction of the equivalence part of the formula and that of the remaining
CNF part. Further, our method is able to deal with equivalences of arbitrary size. This in turn
leads us to an investigation of the relative importance of equivalences of different size. Surprisingly,
this relative importance turns out to be rather differently measured as could be expected when
taking similar relative importance of ordinary clause-lengths as a guiding principle.
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We optimise the various parameters to ensure a convincing speed up in solving formulas with
a substantial equivalence part, both with respect to the various alternative solvers available and
with respect to a variety of benchmarks known of this type.

2 Equivalence reasoning in pre-processor

The first goal of the pre-processor after initialisation is to simplify the formula as much as possible.
This is achieved by iterative propagation of all unary clauses and binary equivalences. After this
procedure, the equivalence clauses are detected using some simple syntactical search procedure,
extracted from the formula and placed in a separate data-structure. We refer to this data-structure
as the Conjunction of Equivalences (CoE). The aim of our equivalence reasoning enhanced pre-
processor is to solve the extracted CoE sub-formula.

A solution is obtained by performing the first phase of the algorithm by Warners and Van
Maaren [11]: We initialise set I = {x1, · · · , xm}, the set of independent variables, with m referring
to the initial number of variables. We loop through the equivalency clauses once, choosing variable
xi in each one to eliminate from all other equivalence clauses. Subsequently we remove xi from I ,
and call it a dependent variable. Thus we end up with a set of equivalence clauses for which all
satisfiable assignments can be constructed by assigning all possible combinations of truth values
to the independent variables. The values of the dependent variables are uniquely determined by an
assignment of the independent variables. Note that during the elimination process a contradiction
might be derived, which implies unsatisfiability of the original problem.

Numerous of such independent sets could be obtained by this algorithm. The performance of a
solver might vary significantly under different choices of the independent set, as we have observed
using the march solver(developed by Joris van Zwieten, Mark Dufour and Marijn Heule and van
Maaren, and which participated in the Sat 2002 [7] and Sat 2003 [8] competitions). Therefore,
two enhancements are added to the original algorithm to find an independent set that would result
in a relative fast performance: The first addition is an explicit prescription for the selection of
the variables to eliminate: For every equivalence clause the variable is selected that occurs (in a
weighted fashion) least frequently in the CNF. Occurrences in binary clauses are counted twice as
important as occurrences in n-ary clauses.

The motivation for selecting the least occurring variable is twofold: First, if the selected variable
xi does not occur in the CNF at all, the equivalence clause in which xi occurs, becomes a tautological

clause after elimination, because xi could always be taken such to satisfy it. Neglecting tautological
clauses during the solving phase could result in a considerable speed-up. Secondly, faster reduction
of the formula is expected when the independent variables occur frequently in the CNF-part:
independent variables will then be forced earlier to a certain truth value by constraints from both
the CoE- and CNF-part.

The second addition is a procedure that reduces the sum of the lengths of all non-tautological
equivalences in the CoE. This procedure consists of two steps: The first searches for pairs of
equivalence clauses that could be combined to created a binary equivalence. Notice that binary
equivalence clauses are always tautological, since one of its literals could be removed from the CNF
by replacing it by the other. The second step loops through all equivalence clauses and checks
whether a different choice for the dependent variable in that clause would result in a smaller sum
of lenghts of non-tautological equivalences. Both methods are iteratively repeated until both yield
no further reduction.

Several benchmark families in the Sat 2003, Sat 2002 and Dimacs benchmark suites1 can be
solved by merely applying the pre-processing presented above. One of these families is xor-chain
which contains the smallest unsolved unsatisfiable instances from the Sat 2002 competition. Table 1
shows the required time to solve these families for various solvers. Notice that march uses the
proposed pre-processing. In the table, the numbers after the family names refer to the number of
instances in a family. The last five columns show the total time required to solve a family. In these
columns, numbers between braces express the number of benchmarks that could not be solved
within a 120 seconds time limit. Judging from the data in the table, only lsat is able to solve all
these families with comparable speed as the march pre-processor.

1 All three suites are available at www.satlib.org
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family contributer suite march eqsatz satzoo lsat zchaff

bevhcube (4) Bevan Sat ’03 0.02 2.64 (2) 2.74 (2) 0.02 0.01 (3)

dodecahedron (1) Bevan Sat ’03 0.01 0.01 0.08 0.01 0.01

hcb (4) Bevan Sat ’03 0.16 0.01 (3) 0.01 (3) 2.53 0.01 (3)

hypercube (4) Bevan Sat ’03 0.09 0.40 (3) 0.08 (3) 0.33 2.56 (3)

icos (2) Bevan Sat ’03 0.01 2.29 (1) 4.12 (1) 0.02 —— (2)

marg (17) Bevan Sat ’03 0.12 195.83 (5) 52.93 (5) 0.13 0.08 (11)

urqh (26) Bevan Sat ’03 0.19 102.58 (20) 16.76 (20) 0.47 1.19 (22)

hardmn (18) Moore Sat ’03 0.87 0.75 —— (18) 0.30 —— (18)

genurq (10) Ostrowski Sat ’03 0.95 0.07 (7) 0.68 (1) 0.57 0.39 (6)

Urquhart (30) Simon Sat ’02 0.27 —— (30) 58.09 (25) 0.01 0.13 (29)

urquhart (6) Chu Min Li Sat ’02 0.03 0.29 (4) 95.78 (3) 0.01 0.04 (5)

xor-chain (27) Zhang-Lintao Sat ’02 0.16 0.17 (25) 0.77 (25) 0.02 2.25 (24)

dubois (13) Dubois Dimacs 0.02 0.1 0.75 0.01 0.06

pret (8) Pretolani Dimacs 0.03 0.08 20.81 0.01 —— (8)

Table 1. Performances of the solvers march, eqsatz, satzoo, lsat and zchaff in seconds on several families
that could be solved by merely pre-processing.

3 Combined lookahead evaluation

Lookahead appears to be a powerful technique to solve a wide range of problems. The pseudo-
code of an elementary lookahead procedure is presented in Algorithm 1. The lookahead procedure
in march closely approximates this elementary procedure. Notice that it does not perform any
equivalence reasoning during this phase.

Algorithm 1 Lookahead( )

Let F ′ and F ′′ be two copies of F
for each variable xi in P do

F ′ := IterativeUnitPropagation( F ∪ {xi} )
F ′′ := IterativeUnitPropagation( F ∪ {¬xi} )
if empty clause ∈ F ′ and empty clause ∈ F ′′ then

return “unsatisfiable”
else if empty clause ∈ F ′ then

F := F ′′

else if empty clause ∈ F ′′ then

F := F ′

else

H(xi) = 1024 × Diff(F , F ′) × Diff(F , F ′′) + Diff(F , F ′) + Diff(F , F ′′)
end if

end for

return xi with greatest H(xi) to branch on

An effective lookahead evaluation function (Diff in short) is critical for the effectiveness of
the branching variable the lookahead returns. Experiments on random 3-Sat instances showed
that using a Diff that counts newly created binary clauses, results in fast performances on these
benchmarks and many other families. Addition of new clauses of length > 2 to the Diff requires
weights that express the relative importance of clauses of various length. Weights that result
in optimal performance on random k-Sat formulas could be described by linear regression: e.g.
Kullmann [4] uses weights in his OKsolver that could be approximated by 0.22n−2. In this equation
n refers to the length of a clause, with n ≥ 2.

Little is known about effective evaluation functions to measure the importance of a new
equivalence clause. In eqsatz by Li [5, 6] only new binary equivalences are counted. These are
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weighted twice as important as a new binary clause. The importance of the new equivalence
clauses of various length could be obtained by measuring the reduction of its translation into
CNF. Applying the approximation of the weights by Kullmann [4] results in a weight function of
2n−1 × 0.22n−2 ≈ 10.33 × 0.44n for a new equivalence of length n. However, this reference should
be labelled as vague since the weights are optimised with respect to random formulas.

Although we have indications that other models might be more appropriate when equivalence
clauses are involved, we take this regression model as a first start. Performances were measured
for various parameter settings of equation (1). In this equation, n refers to the reduced length of
an equivalence clause. Parameter qbase denotes the factor that describes the decreasing importance
of equivalence clauses of various length and parameter qconst expresses the relation between the
reduction of the CNF-clauses and the equivalence clauses. Since march uses a 3-Sat translator,
only new binary clauses are created. The evaluation of the lookahead is calibrated by defining the
importance of a new binary clause to value 1. The result of eqn then defines the relative importance
of a new equivalence clause of length n in relation to a new binary clause.

eqn = qconst × qbase
n (1)

Wide scale experiments were troubled by the lack of useful benchmarks: Many benchmark families
that contain a significant part of equivalence clauses are easily solved with solely the pre-processing
procedures: Either the solving procedure for the CoE results in a contradiction, or the propagation
of the unary clauses and the binary equivalences found during pre-processing are sufficient to solve
the formula. Many benchmarks families with a significant CoE-part that require a sophisticated
solving procedure after pre-processing are also not useful for these experiments, because most or
all of their equivalence clauses have length 3. For comparison: The Sat 2003 [8] competition suite
consisted of 11 families which are solved in pre-processing while only five needed further search.
Of those five only two had a large number of long equivalences after the pre-processing.
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Fig. 1. Performances achieved by march on various settings of qbase and qconst. The values on the z-axis
are the cumulated performances on the whole parity-32 and hwb-n20 families in seconds. Contour lines
are drawn at 110% and 120% of optimal performance.

These two families are the parity32 and the hwb. The first family consists of the Sat-encoding
of minimal disagreement parity problems contributed by Crawford et al. [3]. The second consists
of equivalence checking problems that arise by combining two circuits computed by the hidden
weighted bit function. These latter are contributed by Stanion [8]. Both families have been used
to determine the parameter setting for equation (1) that results in optimal performance. The
results of these experiments are shown in Fig. 1. The values qconst = 5.5 and qbase = 0.85 appeared
optimal during our experiments. Two conclusions can be drawn regarding the results: (1) Parameter
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qbase has a much larger influence on the performance than qconst. (2) Using optimal settings, the
reduction of equivalences is considered far more important than the reduction of the equivalent
CNF-translations would suggest: Tab. 2 shows the used weights for both settings.

Reduced length (n): 2 3 4 5 6 7 8 9 10

CNF-reference: 2.00 0.88 0.39 0.17 0.07 0.03 0.01 0.01 0.00
Found optimum: 3.97 3.38 2.87 2.44 2.07 1.76 1.50 1.27 1.08

Table 2. Weights to measure the reduction of equivalence clauses of various length.

4 Pre-selection heuristics

Although lookahead is a powerful technique, it pays off to restrict the number of variables which
enter this procedure. In Algorithm 1 this partial behaviour is achieved by performing only lookahead
on variables in set P. At the beginning of each node, this set is filled by pre-selection heuristics
that are based on an approximation function of the combined evaluation of the lookahead (Ace).
The ranking of variable x is calculated by multiplying Ace(x) and Ace(¬x). E(x), used to obtain
Ace(x), refers to the set of all equivalence clauses in which x occurs and occ3(x) refers to the
number of occurrences of x in ternary clauses.

Ace(x) = occ3(¬x) +
∑

QiǫE(x)

eq|Qi|−1 +
∑

¬x∨yǫF



occ3(¬y) +
∑

QiǫE(y)

eq|Qi|−1



 (2)

In the versions of march without equivalence reasoning fast performance is achieved on average
by performing only lookahead on the “best” 10 0/0 of the variables. This constant percentage is not
optimal in general. It is not even optimal for the benchmarks used in this paper, but because of
space limitations we restricted ourselves to this 10 0/0. To illustrate the diversity of partial lookahead
optima, march requires 1120 secondes to solve a benchmark provided by Philips using the 10 0/0
setting (see table 3), while it requires only 761 seconds at the optimal setting of 8 0/00.

5 Additional equivalence reasoning

Various addition forms of equivalence reasoning are tested. These include:

– Removal of equivalence clauses that have became tautological during the solving phase. This
results in a speed-up because of faster propagation.

– Propagation of binary equivalences in the CoE: Replacing one of its literals by the other. This
increases the change that a variable occurs twice in an equivalence clause, so both could be
removed.

– Prevention of equivalent variables to enter the lookahead procedure, since equivalent variables
will yield an equivalent Diff.

Only the last adjustment realised a noticeable speed-up of about 10 0/0. The gain that other
procedures accomplished were comparable to their cost, resulting in a status quo in terms of time.

6 Results

Four solvers are used to compare the results of march: eqsatz2, lsat3, satzoo4 and zchaff5. The choice
for eqsatz and lsat is obvious since they are the only other Sat solvers performing equivalence

2 version 2.0, available at http://www.laria.u-picardie.fr/∼cli/EnglishPage.html
3 version 1.1, provided by authors
4 version 1.02, available at http://www.math.chalmers.se/∼een/Satzoo/
5 version 2003.07.01, available at http://www.ee.princeton.edu/∼chaff/zchaff.php
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reasoning. Since equivalence clauses merely occur in handmade and industrial problems, we added
some solvers that are considered state-of-the-art in these categories: satzoo and zchaff, respectively.
In an extended version of this paper, performances of other solvers will be added.

All solvers were tested on a AMD 2000+ with 128Mb memory running on Mandrake 9.1. Be-
sides the parity32 and the hwb benchmarks, we experimented on the barrel and longmult fam-
ilies that arise from bounded model checking [2], five unsolved benchmarks (pyhala-braun-x and
lisa21-99-a) from the Sat 2002 competition contributed by Pyhala and Aloul, respectively [7] and
three factoring problems (2000009987x) contributed by Purdom [10]. Except from both bounded
model checking families and the benchmark provided by Philips, all benchmarks were used in the
Sat 2003 competition. To enable a comparison with the Sat 2003 results6, we used the shuf-
fled benchmarks generated for this competition during our experiments. However, these shuffled
benchmarks caused a slowdown in performance of eqsatz: e.g. eqsatz solves most original parity32
benchmarks within the 2000 seconds time limit.

instance #Cls #Var #Ind #Eq #Nt march◦ march∗ eqsatz satzoo lsat zchaff

par32-1 10227 3176 157 1158 218 0.55 >2000 568.31 >2000 90.85 >2000
par32-2 10253 3176 157 1146 218 0.3 >2000 >2000 >2000 88.43 >2000
par32-3 10297 3176 157 1168 218 1.08 >2000 >2000 >2000 7.54 >2000
par32-4 10313 3176 157 1176 218 7.93 >2000 >2000 >2000 79.87 >2000
par32-5 10325 3176 157 1182 218 8.82 >2000 >2000 >2000 34.41 >2000
par32-1-c 5254 1315 157 1158 218 0.47 >2000 >2000 >2000 3.91 >2000
par32-2-c 5206 1303 157 1146 218 7.82 >2000 >2000 >2000 4.45 >2000
par32-3-c 5294 1325 157 1168 218 5.06 >2000 >2000 >2000 33.59 >2000
par32-4-c 5326 1333 157 1176 218 0.39 >2000 >2000 >2000 52.39 >2000
par32-5-c 5350 1339 157 1182 218 6.77 >2000 >2000 >2000 71.98 >2000
hwb-n20-1 630 134 96 36 35 18.05 39.43 78.51 47.04 771.48 300.72
hwb-n20-2 630 134 96 36 35 23.24 50.82 83.25 73.38 738.16 461.49
hwb-n20-3 630 134 96 36 35 16.16 38.56 75.09 24.37 564.81 257.07
hwb-n22-1 688 144 104 38 37 68.27 164.65 299.45 108. >2000 785.89
hwb-n22-2 688 144 104 38 37 53.67 145.51 297.3 85.79 >2000 1097.33
hwb-n22-3 688 144 104 38 37 58.6 148.29 306.71 60.6 >2000 1710.10
hwb-n24-1 774 162 116 44 43 556.25 796.56 >2000 624.17 >2000 >2000
hwb-n24-2 774 162 116 44 43 463.46 832.48 >2000 862.86 >2000 >2000
hwb-n24-3 774 162 116 44 43 332. 670.21 >2000 471.73 >2000 >2000
hwb-n26-1 832 172 124 46 45 1203.99 >2000 >2000 >2000 >2000 >2000
hwb-n26-2 832 172 124 46 45 1777.78 >2000 >2000 >2000 >2000 >2000
hwb-n26-3 832 172 124 46 45 1703.12 >2000 >2000 >2000 >2000 >2000
barrel-5 5383 1407 - 720 - 0.07 0.07 0.15 0.85 1.9 0.52
barrel-6 8931 2306 - 1260 - 0.15 0.15 0.33 4.94 644.49 2.73
barrel-7 13765 3523 - 2016 - 0.29 0.29 0.38 23.63 >2000 11.38
barrel-8 20083 5106 - 3024 - 0.5 0.5 0.61 69.94 >2000 31.22
barrel-9 36606 8903 - 5760 - 1.19 1.19 1.33 258.37 >2000 240.29
longmult-6 8853 2848 1037 174 90 7.13 3.98 11.96 5.1 66.32 1.59
longmult-7 10335 3319 1276 203 105 35.79 21.37 55.15 21.74 109.19 13.32
longmult-8 11877 3810 1534 232 120 100.92 70.8 185.85 66.22 192.56 68.17
longmult-9 13479 4321 1762 261 135 202.03 130.46 347.75 138.8 289.53 131.46
longmult-10 15141 4852 2014 290 150 260.06 168.21 520.1 232.96 404.27 252.95
longmult-11 16863 5403 2310 319 165 226.35 151.36 662.19 307.62 542.81 344.64
longmult-12 18645 5974 2620 348 180 128.57 89.37 741.19 338.48 709.15 305.07
longmult-13 20487 6565 2598 377 195 67.92 52.69 855.14 272.67 901.13 255.96
longmult-14 22389 7176 2761 406 210 44.33 31.78 985.37 383.08 1112.49 266.54
longmult-15 24351 7807 2784 435 225 25.26 24.54 1108.80 215.12 1236.6 207.72
pb-sat-40-4-03 31795 9638 2860 3002 3001 >2000 510.51 >2000 184.21 >2000 357.98
pb-sat-40-4-04 31795 9638 2860 2936 2935 >2000 600.41 >2000 >2000 >2000 >2000
pb-unsat-35-4-03 24320 7383 2132 2220 2219 771.24 698.22 >2000 >2000 >2000 >2000
pb-unsat-35-4-04 24320 7383 2131 2277 2276 821.43 736.31 >2000 >2000 >2000 >2000
lisa21-99-a 7967 1453 1310 460 459 21.26 1170.12 >2000 >2000 >2000 >2000
2000009987fw 12719 3214 1615 1358 1319 175.68 115.89 521.47 267.81 181.86 116.4
2000009987nc 10516 2710 1303 1286 1262 137.41 84.16 197.27 167.4 159.55 94.61
2000009987nw 11191 2827 1342 1322 1299 135.25 87.9 157.03 218.09 166.55 104.84
philips 4456 3642 1005 342 224 1120.61 1032.82 3390.59 2114.64 1277.68 >3600

Table 3. Performances of the solvers march, eqsatz, satzoo, lsat and zchaff in seconds on various benchmarks
with equivalence clauses.

Two versions of our solver are used to evaluate performance: The first, march◦ uses the equation
eqn = 5.5× 0.85n to measure the reduction of the CoE during the lookahead, and applies it on the
calculation of Ace from the pre-selection heuristics. The second variant, march∗ does not use the

6 Results of the Sat 2003 competition are available at www.lri.fr/∼simon/contest03/results/
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CoE-part during the lookahead but operates using the original CNF instead. Both march variants
use a 10% partial lookahead.

In table 3 the performances are presented for these solvers together with five properties of each
benchmark:

#Cls refers to the initial number of clauses
#Var refers to the initial number of variables
#Ind refers to the number of variables in the independent set
#Eq refers to the number of detected equivalence clauses.
#Nt refers to the number of non-tautological equivalences after pre-processing.

We conclude that aligning Equivalence- and CNF- reasoning as carried out pays off convincingly,
but that, although some instances are not solved without incorporating the CoE reductions during
the lookahead phase (march◦), others suffer from this additional overhead and are better solved by
updating and investigating this CoE part at the chosen path only (march∗).
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