
Incremental Compilation-to-SAT Procedures

Marco Benedetti§ and Sara Bernardini

Istituto per la Ricerca Scientifica e Tecnologica (IRST)
Via Sommarive 18, 38055 Povo, Trento, Italy
{benedetti,bernardini}@itc.it

Abstract. We focus onincremental compilation-to-SAT procedures(iCTS), a promising way to push
the standard CTS approaches beyond their limits. We propose the first comprehensive framework that
encompasses all the aspects of anincremental decision procedure, from the encoding to the incremental
solver. We apply our guidelines to a real-world CTS approach (Bounded Model Checking) and show
how to modify both the generation mechanism of a real BMC tool (NuSMV) and the solving engine of
a public-domain SAT solver (SIM). Related approaches and experimental results are discussed as well.

1 Introduction

Many decision and search problems may be successfully tackled by generating and solving a chain of
increasingly complex SAT instances. Well known examples ofcompilation-to-SAT(CTS) procedures ex-
ist: computer-aided design of integrated circuits [19,17], planning [15], model checking for dynamic sys-
tems [6], scheduling [8], operations research and cryptography, just to name a few. These techniques share
an underlying working schema. They first establish an ordering among classes of potential solutions. Small
and short solutions come first. More and more complex candidates follow. Each class is then mapped onto
a SAT instance solved by a general purpose solver [20,13].

One remarkable strength of this family of techniques ismodularity: state-of-the-art SAT solvers can
be picked off-the-shelf and applied to the solution step. Thus, every advance from the SAT community is
possibly transferred to the above procedures with a minimum effort. Also, advancements proceed the other
way around: a great part of the renewed interest in propositional decision procedures (and of the boost of
performances of SAT solvers during the last ten years) is due to the relevance and generality of the above
family of techniques.

As usual, modularity shows an unpleasant side: solvers have to be treated as almost completely black
boxes. This choice limits the amount of information exchanged between the generating and the solving
side duringone single roundof the procedure, besides preventing information exchange amongsubsequent
rounds. The solver thus misses the key point that it is presented with achainof strictly related instances. A
further underestimated duty one pays for easily plug standard solvers in, is the flattening of highly structured
instances down to a conjunctive normal form (the standard input format for general SAT solvers).

Some approaches have recently emerged to exploit the crucial observation that neither a given instance
in a chain is unrelated to the previous ones, nor the solver is approaching a completely different search prob-
lem every time [17,24,23,5]. These approaches aim both to increase the efficiency of the overall decision
procedure and to allow reasoning that don’t fit well within the usual CTS framework.

In this paper, we present the first comprehensive framework that encompasses all the aspects of an
incremental decision procedurebased on propositional satisfiability. After a few notation and preliminaries
(Section 2 and 3), we characterize a large family of CTS approaches that are eligible forincrementalisation,
and stress the often overlooked issue of turning a standard encoding machinery into an incremental one
(Section 4). Also, issues arising on the solving side are addressed, and two detailed examples are developed
during the presentation. We apply our guidelines to the incrementalisation of a specific CTS approach
(Bounded Model Checking, or BMC for short [6]) and show how to modify both the generation mechanism
employed by a real BMC tool (NuSMV[7]) and a public-domain SAT solver (SIM [13]) (Section 5).

We carefully review the related literature in Section 6, and then present our conclusions and future work
in Section 7. A more thorough presentation of our technique and the proofs of all the results are given in [2].

§ This work is funded by PAT (Provincia Autonoma di Trento, Italy) under grant n. 3248/2003.

206 Marco Benedetti and Sara Bernardini

2 Notation

Given a CNF formulaf and a set of literals∆ on the variablesvar(f) of f , we denote byf ∗ ∆ the
propositional formula obtained fromf after the assignment∆ is made, i.e. the clause set obtained after unit
subsumption ad unit resolution have been performed against each literal in∆ considered as a unit clause.
Given two propositional formulasf1 andf2 and a set of propositional variablesV ⊆ var(f1)∩var(f2), we
write f1 ≡V f2 when the set of models off1 projected ontoV is equal to the set of models off2 projected
ontoV . We graphically represent such formulas by means of direct acyclic graphs that avoid sub-formula
replications (known as RBC and extensions thereof, see [1]). Yet, propositional solvers often require a
conjunctive normal form (CNF) to work. We denote bycnf(f) the set of clauses such thatcnf(f) ≡var(f)

f which is obtained along the guidelines described in [10,21]. Thecnf function is omitted whenever the
context suffices to understand that a CNF formula is required.

3 CTS approaches

Most CTS frameworks tacitly exploit the deduction theorem over a languageL (more expressive than
propositional logic), by stating thatT |= P ⇔ 6|= T ∧ ¬P , whereT is a consistent theory that mod-
els a relevant phenomenon or system or protocol, whileP expresses an (un)desired property of that phe-
nomenon/system/protocol. The problem is to decide the consistency ofW = T ∧ ¬P .

A mechanism purposely designed to get rid of the excess of expressive power ofL stays at the very heart
of every CTS framework. It allows moving to propositional logic by considering chains ofboundedversions
of the original problem obtained through a functionJ.K. : L × N →Prop - calledencoding function- that
maps a formulaW ∈ L and a boundk onto a propositional formulaJW Kk on variablesVk = var(JW Kk).

From the point of view of a state-space search, things work as follows: (1) The space of possible solu-
tions to the problem is partitioned according to a boundk identifying finite classesCk of possible models
for W (the larger the boundk the more complex the solutions inCk); (2) an encodingJW Kk - satisfiable
iff a solution forW happens to lay inCk - is computed together with a decoding function mapping propo-
sitional models of satisfiable encodings onto solutions toW in Ck; (3) JW Kk is solved; whenever it comes
out to be satisfiable, the decoding function plays its role in reconstructing a solution toW . Step 2 is selected
for another round with a higher bound when no solution exists inCk. The loop is exited when either some
resource limit is exhausted or it is possible to prove that none of the remainingCi, i > k contains solutions.
So, the problem of finding out whether or notW has models is answered by deciding a sequence of SAT
problems on{JW Ki, i = 0, 1, 2, ...}.

The peculiar structure ofW - due to application of the deduction theorem withinL - is maintained after
the propositional translation, provided the encoding function is commutative w.r.t. negation and distributive
w.r.t. conjunction. So, we have astructuredCTS sequenceJW Kk = JT ∧ ¬P Kk = JT Kk ∧ ¬JP Kk, where
JP Kk is usually by far smaller thanJT Kk and nonetheless responsible for potential inconsistencies inJW Kk.

As an example of a CTS approach, let us consider SAT-based classical planning [15]. It works by
encoding intoJW Kk two components: (1) an instanceJT Kk of the theory describing the planning domain
in terms of the interconnected preconditions and effectsof at mostk layers of actions(together with other
constraints such as mutual exclusion conditions between pairs of actions in the same layer), and (2) the
condition or goalJP Kk to be reached after the last layer of actions has been executed.

Concepts out of reach for raw propositional logic here are the universal quantifiers in front of the action
schemata, and the existence of fluent predicates along the infinite timeline of the modeled world. Both of
them are dealt with by propositionallyinstantiatingstate variables and action schemata as many times as
needed.

In the basic encoding, each operator is instantiated with all the possible combinations of arguments
to obtain several parameterless (boolean) actions. As the number of objects in classical planning domains
doesn’t change over time, thisgroundizationcan be done once for all and doesn’t require incrementality.
Conversely, the unrolling of plans over the time line (in terms of the number of action layers) is potentially
infinite. Indeed, the bound for this CTS approach represents the maximal number of action layers in the
solution plan we are currently looking for, andCi is the set of feasible plans with exactlyi layers of actions.

Incremental Compilation-to-SAT Procedures 207

As classical planning domains have a finite state space in spite of the infinite number of feasible plans,
it is also possible to check the set of reached states for saturation, thus ensuring that no solution exists for
unfeasible goals. In case a satisfiable instance is encountered, the resulting plan immediately grows out of
the given model as filtered by the decoding function, that remembers (1) which layer of action and status
are associated with each propositional state variables, and (2) which layer and parameters are associated
with propositional action instantiations.

4 Incremental Compilation-to-SAT (iCTS)

Every iCTS approach is made up of an incremental solver, an incremental
generation mechanism and an architecture that explains how these compo-
nents interact. As opposite to classical SAT solvers, an incremental solver is
a persistent object partly aware of its surroundings that addresses the prob-
lem of deciding a chain of related satisfiability instances as a whole, thus
re-using information gathered from past search.
Let us consider a SAT solver as a search engine in the space of truth as-
signments overV = var(f) attempting to makef evaluate to true. Then,
an iSAT solver is a search engine that explores a search spaceS defined
only once per chain, not once per instance. Each instancefi in a chain
{fi, i = 0, 1, ...} specifies which portionSi of the whole search space has
to be searched for a solution. When a subspace is proved empty, a larger
subspace (monotonically containing the previous ones) is considered.

S1

H0

S2

H2

H1

S0

As depicted in the picture aside, subspaces are connected to one another by means of some special sets
of propositional hypothesesHi that mark the boundary betweenSi andSi+1, in so asSi is just the subspace
of Si+1 rooted at the branchHi.

Definition 1 (iSAT problem). An iSAT instance is a sequence of couples{〈fi,Hi〉, i = 0, 1, ...} wherefi

is a CNF formula,Hi ∈ var(fi) is a set of propositional hypotheses, and∀i.fi ⊆ fi+1 . The iSAT problem
consists of deciding whether∃i.SAT (fi ∗ Hi).

An iSAT instance is passed to an incremental solver step by step by repeatedly invoking the primitive
“enlargeSearchSpace(∆fi, Hi) ” to notify the dimension|var(fi) \ var(fi−1)| and the “shape”fi

of the new subspace to be explored, together with the positionHi where it is attached as a subspace ofSi+1

(with ∆fi = fi \ fi−1) .
When the time for implementation comes, it is by far convenient to modify an existing DPLL solver

(thus retaining state-of-the-art technology) at the expense of performing some modifications.
Each instancefi is considered under the hypothesesHi, placed at the very bottom of the search stack.

Standard solvers are allowed to withdraw every stacked hypothesis as soon as it comes out to be responsible
for inconsistencies. An incremental solver behaves in the same way in all the cases but when the hypothesis
to be removed is withinHi. By removing such hypothesis it would indeed escape fromSi. Rather, it
stops working and waits for the next enlargement of the search space. Search is then restarted across the
newly added subspace by removing the selected source of inconsistency. The hypothesesHi loose their
inviolability, which is inherited byHi+1.

We modified the SIM solver [13] to obtain i-SIM [2] by (1) slightly revising the standard LIFO policy
employed by the stack of hypotheses to allow the insertion ofHi, (2) substituting “the stack only contains (a
subset of)Hi, wait!” for “ the stack is empty, quit!” as a stop condition and (3) making eligible for dynamic
enlargement all the internal data structures whose size depends on the number of variables and/or clauses
in the formula (taking care to keep consistency between all mutual references).

We now briefly show which kind of connections among adjacent instances can be leveraged during the
solving process. For a more thorough description of our technique we refer the reader to [2].

Let us consider a structured CTS problem onW = 〈T , P 〉 that generates a sequence of SAT instances
JW Ki = JT Ki ∧ ¬JP Ki with amonotone encodingfor the background theory (∀i.JT Ki ⊆ JT Ki+1).

208 Marco Benedetti and Sara Bernardini

Definition 2 (Incremental Encoding).An incremental encodingfor {JW Ki, i = 0, 1, ...} is a sequence of
couples

{〈
JT , P K+i ,Hi

〉
, i = 0, 1, ...

}
, with JT , P K+0 = I0 ∧ P0, JT , P K+i = JT , P K+i−1 ∧ ∆JT , P Ki

i−1,
∆JT , P Ki+1

i =̇ ∆JT Ki+1
i ∧∆JP Ki+1

i and{
JT K+0 =̇ I0

JT K+i =̇ JT K+i−1 ∧∆JT Ki
i−1 i > 0

{
JP K+0 =̇ P0

JP K+i =̇ JP K+i−1 ∧∆JP Ki
i−1 i > 0

whereJT K+i (∆JT Ki
i−1) is the incremental(differential) encodingfor a monotone background theoryT

and is such that∀i.JT K+i ≡ JT Ki, while JP K+i (∆JP Ki
i−1) is the incremental(differential) encodingfor

the propertyP ∈ L and is such that∀i. JP K+i ∗ Hi ≡Vi
JP Ki for a sequence{Hi, i = 0, 1, ...} of sets of

literals called closing set of hypotheses overJP K+i . The incremental property encoding is built after an
open encodingoverL, which is a function mapping a formulaQ ∈ L and a couple of indexesk, k′ (k ≤ k′)
onto a propositional formulaKQKj

k in such a way thatJP K+0 = P0 =KP K00,Hk = {¬φQ
k |φ

Q
k ∈ JP K+k }, and

∆JP Kk′

k =
∧

φQ
k ∈JP K+k

φQ
k →KQKk+1

k′ .

The key property of an incremental encoding is thatit defines an iSAT instance satisfiability equivalent
to the corresponding sequence of standard encodings, provided a valid open encoding overL is defined.
Open encodings mimic the usual encodings but introduce a number of additional literalsφQ

k (associated to
a boundk and to a formulaQ ∈ L) used by the subsequent open encodings as coupling points to have the
overall formula grow up: afterKQKk

k inserts a closing literalsφQ′

k , ∆JP Kk+1
k expands its meaningKQ′Kk+1

k+1

and this in turn creates coupling points for the next round.
At the clause level, a valid open encoding for adjacent bounds may be obtained by posingKP Kk

k :=(
∆+

k \∆−
k+1

)
∪

{
φP

k ∨ Γ |Γ ∈ ∆−
k+1

}
, given the sequences of sets of clauses such thatcnf(JP Ki+1) =

cnf(JP Ki) \∆−
i ∪∆+

i .
Alternatively, we mayincrementally CNF-izeany encoding exhibiting the two propertiesKP K0k′ ∗Hk′ ≡

JP Kk′ and KP Kk
k′ · σk′ =KP Kk

k′+1 for the substitutionσk′ = {KfKk′+1
k′+1/φf

k |φ
f
k ∈ pure(KP Kk

k′)}. These
conditions are met by open encodings built over the family ofdisjunctiveproperty chains. For these chains
it is ∀i ≥ 0.JP Ki JP Ki+1, whereg f (f is disjunctively expandedfrom g) iff a formula h with pure
literals on{v1, ..., vn} and two substitutionsσg = {g1/v1, ..., gn/vn} andσf = {(g1 ∨ f1)/v1, ..., (gn ∨
fn)/vn} exist such thatg = h · σg andf = h · σf . Thereafter, incremental CNF-ization amounts to ensure
consistency across the clause versions of all the formulas undergoing CNF-ization by maintaining the same
meaning for variables shared among differential encodings.

The intuition behind the incremental encoding is that to connect subsequent meshes of the chain we just
need to focus on the property encoding, whose open encoding indeed exhibits the forethought of spreading
place-holders across the formula as coupling points between adjacent instances. When the solver stops
searching and a resolution tree rooted at the empty clause is found, either it is independent from stacked
hypotheses (in this case, not only the current SAT instance but the whole iSAT instance is inconsistent),
or some closing hypothesis lies among its leaves. In the latter case, the empty clause fails to survive the
backtrack step over the closing hypothesis, so the search can restart over the enlarged problem defined by
gathering new constraints.

A simple example that captures many relevant aspects of the iCTS framework is the following. We
incrementally test ashift registerwith n bits and the entry bit always equal to0 against the (false) property
"the register never becomes empty if the two most significant bits are initially set".

Formally, if bj(t) is the value of thej-th bit after t shifts, the system is described byT = Init ∧
∀t > 0.¬b0(t) ∧ ∀j > 0.bj(t) ↔ bj−1(t − 1), whereInit = bn−1(0) ∧ bn−2(0), and the property is
P = ¬∃t.∀j.¬bj(t). By the deduction theorem, we assert that the property holds iff no model exists for
T ∧ ¬P , i.e.: forW = T ∧ P whereP = ¬P .

Even though the above theory is too expressive to be directly translated into propositional logic (t
ranges over an infinite domain) conjunctions/disjunctions over a finite set of propositional variablesV i

k =
{bj(t), j = 0, ..., n − 1, t = 0, ..., k} can be substituted for the quantifiers given any finite time horizonk.
The incremental version of the resulting propositional theory (up to step 3) is depicted in the bottom half of
Figure 1.

Incremental Compilation-to-SAT Procedures 209

bound 0 bound 3bound 1 bound 2

Pr
op

er
ty

 E
nc

od
in

g
Th

eo
ry

 E
nc

od
in

g

17

30

29

28 40

41

42

18

16

0 1 2 7 8 9 19 20 21 31 32 33

24 36

14

26

38

5 12

3422103

15 27 39

6

4 11 23 35

13 25 37

∧

∧ ∧ ∧

∧∧∧

∧ ∧ ∧

∧
∧

∧

∨ ∨ ∨

→ →

↔

↔

↔

↔

↔

↔

b0(1) b0(2) b1(2) b0(3)b1(1) b2(1) b2(2) b1(3) b2(3)

φ0 φ1 φ2 φ3

∆JP K10 ∆JP K21

∨

b0(0) b1(0)

JT K+1 JT K+2 JT K+3

∆JP K32

→

∆JT K10 ∆JT K21 ∆JT K32

KP K1 KP K2 KP K3

b2(0)

∧

JP K+0 ≡KP K0

JP K+1

JP K+2

JP K+3

JT K+0 ≡ JT K0

Fig. 1.An example of incremental encoding for a BMC problem.

An incremental encoding for the propertyJP Kk ≡
∨k

t=0

∧n−1
j=0 ¬bj(t) is obtained by choosingKP Kt

t =
∧n−1

j=0¬bj(t)∨φi (upper half in the figure), and it is easy to check thatJP K+t ∗¬φt ≡Vt
JP Kt. As the instance

is built incrementally, argument-arrows never end in a region lighter than the one they originate from, and
the only link between adjacent instances is provided by the open variables{φi}. The small numeric labels
near each node represent an incremental labelling for the CNF-ization procedure that generates adjacent
and consistent ranges of propositional variables across subsequent encodings.

The iSAT solver is initially provided with the problemcnf(JT , P K+0) to be solved under the hypothesis
¬φ0. An inconsistency is detected soon (the property does not hold in the initial state). By traversing the
dependency graph, the solver discovers that the hypothesis¬φ0 is responsible for such contradiction. It tells
the generation machinery, which in turn generates the differential part of the encoding from step0 to step1
and produces the clauses arising from the incremental CNF-ization of the subgraph rooted atJT , P K+1 . The
solver is notified of the new size of the problem, and is then given both the clause-setcnf(∆JT , P K10) and
the new working hypothesis¬φ1. Then, it dismisses¬φ0 (it also notices that¬φ0 was at the very bottom
of the stack, so the unit clauseφ0 is learned, and this amounts to learn thatJT , P K0 has no model).

This incremental generate-and-solve loop goes on encountering other contradictions until step 3, when
JT , P K+3 is considered under the hypothesis¬φ3. A model for JT , P K+3 ∗ ¬φ3 is found and used to re-
construct a 3-step witness falsifying the property. The solver maintains its internal state through the whole
process and also retains all the consequences of the already performed search. In this simple example, the
necessary truth value of many variables and some unit clauses are inherited from previous runs.

210 Marco Benedetti and Sara Bernardini

5 Bounded Model Checking as a testbed

BMC [6] is a SAT-based automatic technique to verify a reactive system modelled as a finite state automaton
M against a propertyf expressed inlinear temporal logic(LTL). The semantic entailmentM |=k E¬f
to be checked is dealt with by solvingJM,fKk := JMKk ∧ J¬fKk, whereJMKk is ak-step long boolean
encoding of the transition relation associated withM , while J¬fKk unrolls the semantics of¬f over a path
of lengthk by representing all the possible behaviours violatingf on such path.

We refer the reader to [6,2] for a detailed description of this technique and to [3] for the PLTL (an
extension of LTL) standard encoding we start from.

To incrementalise this technique we first generate a dif-
ferential encoding for the monotone background theory:
I0 =̇ I(s0) and∆JMKk =̇ T (sk−1, sk) (see [6,2,5]). Ac-
cording to [3], two adjacent property encodings only differ
as each future time operator unrolls its semantics to the
newly added time step.

From a CNF point of view, the clauses to be
added/removed are obtained by recursively considering
such operators, and are obtained by traversing the syntactic
tree of the PLTL formula and conjuncting the set of clauses
to be added/removed due to each node labeled by a future
time operator.
The picture aside shows that shifting fromJFfK1 to JFfK2

v2 v3 v4

v1

v1JFfK1
JFfK2

JfK22

∨

Op Op Op

S2

∨

S0 S1

the CNF translation of the nodev1 changes fromcnfa = cnf(v1 ↔ (v2∨v3)) = {{¬v1, v2, v3}, {¬v2, v1},
{¬v3, v1}} to cnfb = cnf(v1 ↔ (v2 ∨ v3 ∨ v4)) = {{¬v1, v2, v3, v4}, {¬v2, v1}, {¬v3, v1}, {¬v4, v1} }}
and that the clausescnfc = cnf(JfK22) appear, so∆+

2 = {{¬v1, v2, v3, v4}, {¬v4 , v1}} ∪ cnfc ∪ Γ+
2 and

∆−
2 = {{¬v1, v2, v3}} ∪ Γ−

2 , whereΓ+
2 andΓ−

2 are computed by recursively looking for nested future
time operators within the subtrees rooted atv2 andv3. These expressions can be easily generalized to shift
from k to k + 1.

Rather than working at the clause level, we may construct a higher-level incremental procedure that
exploits the semantics of time operators. This procedure actsbeforethe CNF converter is presented with

JF(a ∧ cUb)K0

c(0)a(0) b(0)

∧

a(0) b(0) c(0) a(1) b(1) c(1)

∧

∧

∨

∨

∧

JF(a ∧ cUb)K1

JcUbK01
JcUbK11

a(0) b(0) c(0) a(1) b(1) c(1) a(2) b(2) c(2)

∧ ∧

∨

∨

∧ ∧

∨

∧

JF(a ∧ cUb)K2

JcUbK02 JcUbK12

∧
JcUbK22

bound 0 bound 1 bound 2

∨

JfK+1

∨ KgK2

a(0) b(0) c(0) a(1) b(1) c(1) a(2) b(2) c(2)

Φ
g
0

∧

∨

Φ
f
0

∧

∨

∧

∨

∧ ∧

Φ
f
1

∧
∧

→

→ →

→

JfK+2

Φ
f
2

JfK+0

Φ
g
1 Φ

g
2

KgK0 KgK1

KfK1 KfK2

∧

∨

Fig. 2.Standard and incremental encoding forf = F(a ∧ g) = F(a ∧ cUb) with g = cUb

Incremental Compilation-to-SAT Procedures 211

0

10

20

30

40

50

60

70

80

50 100 150 200 250

be
nc

hm
ar

k
m

ea
su

re
 [s

ec
s.

]

k

Benchmarking of counter.smv (solving)

i-BMC

BMC

0

5

10

15

20

25

30

5 10 15 20 25 30 35 40
k

Benchmarking of periodic.smv (solving)
BMC

i-BMC

BMC

i-BMC

0

2

4

6

8

10

12

14

2 4 6 8 10 12 14 16 18 20
k

Benchmarking of dme.smv (solving)
BMC

i-BMC

BMC

i-BMC

Fig. 3.Solving time compared on 3 BMC chains (310 instances)

the formula, thus yielding a more intuitive encoding. It follows the guidelines given in the previous section
and consists of defining a valid open encoding (see [3] for details) for PLTL formulas.

Definition 3 (Open PLTL Encoding). The open translation of a PLTL formula from boundi to boundk
(i ≤ k) is a propositional formula inductively defined as follows.

KqKi
k =̇ qi K¬qKi

k =̇ ¬qi Kf ∧ gKi
k =̇ KfKi

k∧KgKi
k Kf ∨ gKi

k =̇ KfKi
k∨KgKi

k

KXfKi
k =̇

{
φf

k i = k

KfKi+1
k i < k

KFfKi
k =̇

∨
j∈ [i,k] KfKj

k ∨ φFf
k KGfKi

k =̇ ⊥

KfUgKi
k =̇

∨
j∈ [i,k]

(
KgKj

k ∧
∧

h∈ [i,j) KfKh
k

)
∨

(
φfUg

k ∧
∧

h∈ [i,k] KfKh
k

)
KfRgKi

k =̇
∧

j∈ [i,k]

(
KgKj

k ∨
∨

h∈ [i,j) KfKh
k

)
∧

(
¬φfRg

k ∨
∨

h∈ [i,j] KfKh
k

)
KYfKi

k =̇
{
⊥ i = 0
KfKi−1

k i > 0
KZfKi

k =̇
{
> i = 0
KfKi−1

k i > 0
KOfKi

k =̇
∨

j∈ [0,i] KfKj
k KfSgKi

k =̇
∨

j∈ [0,i]

(
KgKj

k ∧
∧

h∈ (j,i] KfKh
k

)
KHfKi

k =̇
∧

j∈ [0,i] KfKj
k KfTgKi

k =̇
∧

j∈ [0,i]

(
KgKj

k ∨
∨

h∈ (j,i] KfKh
k

)
Figure 2 compares this incremental encoding with the standard one for a sample PLTL formula. The

former, instead of growing form right to left in a definitely non-incremental manner as the latter does, is
such thatJfK+0 ⊆ JfK+1 andJfK+1 ⊆ JfK+2 . The semantics of the original encoding is nonetheless preserved
according toJfKk ≡Vk

JfK+k ∗ Hk. As an example, we easily check this relation withk = 1, V1 =
{a(0), b(0), c(0), a(1), b(1), c(1)} andH1 = {¬φg

1,¬φf
1} by existentially quantifying overφg

0 andφf
0 .

Our technique has been implemented within NuSMV [7], a state-of-the-art symbolic model checker
used both to verify industrial designs of hardware and software systems and to test new formal verification
techniques. NuSMV that integrates BDD-based and SAT-based model checking techniques. We modified
the encoder/decoder modules according to Definition 3 and the CNF converter. Then, we experimented
with several problems from the standard distribution of NuMSV using iSIM, experiencing a remarkable
improvement in carrying out both the encoding and the solving task.

Figure 3 presents some results. The "counter" instance (deep counterexample at step 256 over a rather
simple model) is particularly interesting as it isolates the contribute of the incremental machinery from the
complexity of the underlying theory. The "periodic" and "dme" instances tests true specifications against
more complex models (an asynchronous pipeline and a sequential logic network).

6 Related works

Several slightly different notions of incrementality have been proposed for the SAT problem during the
last ten years. The first one was introduced by Hooker [14] in 1993. He addressed the problem of decid-
ing whetherg ∪ {Γ} is still satisfiable, given a satisfiable clause setg and an additional clauseΓ . This
basic mechanism is then exploited to decide a formulaf , by adding one clause at a time and solving|f |
incremental sub-problems. The proposed algorithm is an adaptation of the basic DPLL procedure [9] that

212 Marco Benedetti and Sara Bernardini

retains the position in the search tree (the path form the root to the last node examined) when a model for
f is encountered. Then, if the assignment also satisfiesf ∪ {Γ}, nothing has to be done. Otherwise, the
algorithm addsΓ to the clause set (and the possibly nonempty setvar(Γ) \ var(f) to the variable set),
backtracks untilΓ stops generating inconsistencies, and finally restarts to visit the search tree. This method
was later extended to deal with the addition of multiple clauses at one time [4].

The Hooker’s approach was conceived to solve problems arising from logic circuit verification, and,
more generally, from problems related to the Electronic Design Automation (EDA). Significant improve-
ments over the original proposal have been recently reported for applications on the same domain [17,18].
These contributions describe a method to simultaneously solve a series of closely related SAT instances
which is similar to the Hooker’s one but also allows for the removal of sets of clauses. Formally, the pro-
posed technique tackles the following problem [18]. Given a treeG = (V,E) where each nodev ∈ V
denotes a set of clausesC(v) and each path from the root to a particular nodevi is associated with the SAT
instanceϕ(vi) =

⋃
0≤j≤i C(vj), decide the satisfiability of all the instances on the leaves. A former ver-

sion of this formalization exists [16,17] where only trees of depth one are considered, in so as each formula
fi := fC ∪ ∆fi on a leaf just adds some specific set of clauses∆fi to a shared root subformulafC . A
DPLL-like algorithm is first applied to check the satisfiability of the root. If it is unsatisfiable then all the
SAT problems at the leaves are unsatisfiable. Otherwise the algorithm recursively traverses the problem tree
and checks the satisfiability of each node. The model of each satisfiable node is used as a starting point for
all the child problems. Whenever the algorithm bumps into an unsatisfiable node it concludes that all the
instances in the sub-tree rooted at that node are inconsistent and backtracks.

The same authors later proposed SATIRE [24], once more in the framework of EDA verification and
optimization problems. SATIRE is a DPLL-like SAT solver that uses an incremental reasoning engine to
deciden related SAT instancesϕ1, . . . , ϕn whereϕi+1 = (ϕi \ ρi)∪αi+1 (ρi is the clauses to be removed
andαi+1 the clauses to be added in order to transformϕi in ϕi+1). As a major contribution this work
enlightens the importance of learned clauses in the incremental solving process. SATIRE indeed tries to
take advantage of the conflict clauses learned during the solution of the instancesϕ1, . . . , ϕi while tackling
ϕi+1. The main issue in reusing learned clauses is that the removal of clauses may clash with the validity of
recorded conflict clauses. Whenever a clause belonging to the clause set generating a given conflict clause
is removed the conflict clause does’t hold any more and has to be removed. The problem is overcome in
SATIRE by means of a detailed determination of the relationships between learned clauses and existing
constraints performed during the conflict analysis. This mechanism requires an extra computation that can
be very time consuming.

SATIRE’s authors first enlightened that the reuse of learned clauses could be very effective in the context
of the BMC procedure. They indeed experimented with some SAT formulas coming from BMC encodings
and showed significant improvements as to solving time. The big potential of sharing learned clauses be-
tween similar BMC instances was independently investigated by Shtrichman [23], who already has worked
on tuning generic SAT solvers for BMC instances by means of pre-computation of the variable ordering and
some form of internal constraints replication to reduce the dimension of the search space [22]. He observed
that the sets of learned clauses obtained for consecutive bounds are quite similar, though the additional prob-
lem of deciding which conflict clauses maintain validity still arises. The author proposes a DPLL algorithm
augmented with a procedure to isolate the reusable conflict clauses. This procedure is based on a careful ex-
ploration of the implication graph used to perform the conflict analysis similar to the one introduced in [24]
and it suffers from the same disadvantages coming from the additional book-keeping required. Experimen-
tal results show that constraints sharing generally has a positive effect on performances, but sometime its
overhead overcomes the benefits.

Recently, one SAT solver (SATZOO [11]) has been implemented to incorporate the concept of in-
cremental resolution for highly related SAT instances. It is based on a traditional DPLL-style procedure
augmented with an interface which, given two subsequent related SAT instances, allows the second to be
specified incrementally from the first by means of adding and removing constraints. The interface lets only
unit clauses be removed from the clause database. This way, all the clauses learned during one run may be
reused by the search procedure during the subsequent runs because the unit clauses can be considered as
assumptions and learned clauses are independent of the assumptions under which they are deduced.

The potential of an incremental resolution of many related instances is so evident that also the state of
the art SAT solver Chaff [20] has been integrated in his last release with a module that shows an incremental
solving capability. A more detailed description of the used technique can be found in [12].

Incremental Compilation-to-SAT Procedures 213

7 Conclusions and future work

We proposed an integrated approach to incremental satisfiability that allows toincrementaliseexisting CTS
procedures. We presented an incremental machinery that mainly retains the simplicity and strength of the
original non-incremental one. In particular, we showed how to connect subsequent instances in a chain
by relying on a tighter integration with the solver. We unveiled the importance of the deduction theorem
and of the incremental property encoding to completely solve the learned-clause problem. We discussed
the modifications needed to obtain an incremental solver and pointed out some details of the incremental
generation step. We also presented an example of a complete iCTS implementation on top of real-world
tools and gave a summary of the research on incremental decision procedures reported so far in the literature.

Our future work goes towards 1) the application of our framework to other domains, 2) a further enlarge-
ment of the iSAT solver interface, 3) the integration ofinductive learningmethods within our approach, and
4) some form ofvalidity checkingobtained by inductively reasoning on the structure of refutations rather
than by explicit induction.

References

1. P. A. Abdulla, P. Bjesse, and N. Eén. Symbolic Reachability Analysis Based on SAT-Solvers. InProc. of TACAS
2000, volume 1785, pages 411–425, 2000.

2. M. Benedetti and S. Bernardini. Incremental Compilation-to-SAT Procedures. Technical Report T03-12-13,
sra.itc.it/people/benedetti/TR031213.pdf , ITC-Irst, 2003.

3. M. Benedetti and A. Cimatti. Bounded Model Checking for Past LTL. InProc. of TACAS 2003, number 2619 in
LNCS, pages 18–33, 2003.

4. H. Bennaceur, I. Gouachi, and G. Plateau. An Incremental Branch-and-Bound Method for Satisfiability Problem.
INFORMS Journal on Computing, 10:301–308, 1998.

5. S. Bernardini. Structure and Satisfiability in Propositional Formulae.AI*IA Notizie, 4:46–51, 2003.
6. A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Symbolic Model Checking without BDDs. InProc. of

Design Automation Conference, volume 1579, pages 193–207, 1999.
7. A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani, and A. Tacchella.

Nusmv 2: An opensource tool for symbolic model checking. InProc. of CAV 2002, volume 2404 ofLNCS, 2002.
8. J. M. Crawford and A. D.Baker. Experimental results on the application of satisfiability algorithms to scheduling

problems. InProc. of 12th AAAI ’94, pages 1092–1097, 1994.
9. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.Journal of the ACM, 5:394–

397, 1962.
10. T. Boy de la Tour. Minimizing the Number of Clauses by Renaming. InProc. of the 10th Conference on Automated

Deduction, pages 558–572, 1990.
11. N. Eén and N. Sörensson. Temporal Induction by Incremental SAT Solving. InProc. of the First International

Workshop on Bounded Model Checking, 2003.
12. Z. Fu. zChaff. http://ee.princeton.edu/ chaff/zchaff.php, 2003.
13. E. Giunchiglia, M. Maratea, A. Tacchella, and D. Zambonin. Evaluating Search Heuristics and Optimization

Techniques in Propositional Satisfiability. InProc. of IJCAR 2001, 2001.
14. J.N. Hooker. Solving the Incremental Satisfiability Problem.Journal of Logic Programming, 15:177–186, 1993.
15. H. Kautz and B. Selman. Planning as satisfiability. InProc. of ECAI 1992, pages 359–363, 1992.
16. J. Kim, J. Whittemore, J. P. M. Silva, and K. A. Sakallah. Incremental Boolean Satisfiability and its Applications

to Delay Faults Testing. InIEEE/ACM International Workshop on Logic Synthesis, 1999.
17. J. Kim, J. Whittemore, J. P. M. Silva, and K. A. Sakallah. On Applying Incremental Satisfiability to Delay Fault

Problem. InProc. of DATE 2000, pages 380–384, 2000.
18. J. Kim, J. Whittemore, J. P. M. Silva, and K. A. Sakallah. On Solving Stack-Based Incremental Satisfiability

Problems. InProc. of the ICCD 2000, pages 379–382, 2000.
19. T. Larrabee. Test pattern generation using boolean satisfiability. InIEEE Transaction on Computer-aided Design,

pages 4–15, 1992.
20. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an Efficient SAT Solver. In

Proc. of the 38th DAC, pages 530–535, 2001.
21. D. A. Plaisted and S. Greenbaum. A Structure-preserving Clause Form Translation.Journal of Symbolic Compu-

tation, 2:293–304, 1986.
22. O. Shtrichman. Tuning SAT checkers for Bounded Model Checking. InProc. of the 12th International Conference

on Computer Aided Verification, Lecture Notes in Computer Science. Springer Verlag, 2000.
23. O. Shtrichman. Pruning Techniques for the SAT-based Bounded Model Checking Problem. InProc. of

CHARME’01, pages 58–70, 2001.
24. J. Whittemore, J. Kim, and K. A. Sakallah. SATIRE: A New Incremental Satisfiability Engine. InProc. of the 38th

Conference on Design Automation, pages 542–545, 2001.

